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ABSTRACT 

 

 

Affective agents are autonomous intelligent software agents that are programmed to 

achieve a set of goals by deciding upon action choices within a particular problem 

environment through the emulation of psychological affect, i.e. valenced „feelings‟ 

elicited toward the current problem environment.  The Affective Decision-Making 

Engine (ADME) used by affective agents is designed to allow it to cope with complex 

problem environments such as computer games.  For this research, open, interactive, 

and context-sensitive environments found in games are models for complex problems.  

Current adaptive agents and classification agents face difficulty in coping with these 

environments: the problem presents neither a consistent dataset to optimize against, 

nor a stable population of elements to train behaviour.  These factors further 

exacerbate their ability to fulfil all set goals.  This research is motivated by the ability 

of living organisms to adapt and summarily classify completely new and unfamiliar 

situations similar to these complex problems.  In organisms, emotions act as an 

internal cognitive mechanism to evaluate how good or bad any situation is to the 

organism.  The organism is positively or negatively affected, and is driven to perform 

actions that mitigate this affect.  To emulate this process of affect, ADME assigns an 

Affect Value (AV) for every feature possessed by observed elements or objects in the 

problem environment.  The AV calculates the correlation coefficient of a feature 

against the change in each goal outcome value, in a table called an Affect Matrix 

(AM).  Through the sum correlation, the AM summarizes each element‟s overall 

affect to each goal, to discover significant goals to prioritize.  Later, a homeostat 

balances the significant goals with the best action for mitigating the affect.  By using 

correlation coefficients, this research has found that the ADME is able to discover 

features that affect the agent‟s goal outcome values.  Experimental results show that 

affective agents surpass state-transition and adaptive agents when converging towards 

best actions for significant goals in complex problems, though it requires greater 

memory usage.  These research findings show that affective agents have great utility 

as single pass multi-goal reinforcement tools for unfamiliar and highly dynamic 

environments. 
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ABSTRAK 

 

 

Agen afektif merupakan perisian agen cerdas berautonomi yang diaturcara untuk 

memenuhi suatu set matlamat dengan menentukan pilihan tindakan untuk sesuatu 

persekitaran masalah secara menteladani afek psikologi, iaitu valens perasaan yang 

diterbitkan dalam persekitaran masalah semasa.  Enjin Pembuatan Keputusan Afektif 

(ADME) yang digunakan oleh agen afektif di rekabentuk untuk membolehkannya 

tangani persekitaran masalah kompleks seperti permainan komputer.  Dalam 

penyelidikan ini, persekitaran yang terbuka, berinteraksi, dan peka-konteks yang 

ditemui dalam permainan komputer dijadikan model bagi masalah kompleks.  Agen 

penyesuaian dan agen pengelasan semasa menghadapi kerumitan dalam menangani 

persekitaran sebegini: tiada set data tekal yang boleh dibekalkan untuk kerja 

pengoptimuman, dan tiada juga populasi unsur yang stabil yang boleh digunakan 

untuk melatih kelakuan.  Faktor-faktor ini juga menyukarkan kerja untuk memenuhi 

seluruh set matlamat yang ditetapkan.  Penyelidikan ini didorongkan oleh keupayaan 

organisma hidup menyesuaikan dan mengkelaskan secara ringkas situasi yang baru 

dan belum dikenali, seperti juga masalah kompleks sebegini.  Dalam setiap organisma, 

emosi berperanan sebagai alat kognitif untuk menilai berapa baik atau burukkah 

situasi tersebut kepada organisma berkenaan.  Organisma tersebut akan terkesan 

secara baik atau buruk, dan ia akan tergerak untuk melaksanakan tindakan yang 

mampu mengatasi kesan tersebut.  Untuk menteladani proses afek ini, ADME 

meletakkan Nilai Afek (AV) pada setiap ciri yang dimiliki oleh setiap elemen atau 

objek yang kelihatan dalam persekitaran masalah.  Nilai AV mengira pekali korelasi 

sesuatu ciri bardasarkan perubahan pada nilai matlamat semasa, dalam sebuah jadual 

yang dipanggil Matriks Afek (AM).  Dengan menjumlahkan korelasi, AM 

meringkaskan afek keseluruhan setiap unsur terhadap setiap matlamat, untuk menemui 

matlamat penting yang perlu diutamakan.  Kemudian, sebuah homeostat akan 

mengimbangi matlamat penting dengan tindakan terbaik untuk menangani kesan 

afeknya.  Dengan menggunakan pekali korelasi, penyelidikan ini mendapati bahawa 

ADME mampu menemui ciri-ciri yang akan memberi-kesan pada nilai-niai matlamat 

agen. Keputusan ujikaji menunjukkan yang agen afektif mendahului agen peralihan 

keadaan dan penyesuaian semasa proses mencari tindakan terbaik untuk setiap 

matlamat penting dalam masalah kompleks.  Namum begitu, ia memerlukan 

penggunaan ingatan utama yang lebih.  Penemuan penyelidikan ini menunjukkan yang 

agen afektif mempunyai kebergunaan tinggi sebagai alat pengkukuhan matlamat-

berbilang sekali-lalu, untuk persekitaran yang sentiasa berubah dan tidak dikenali. 

 

 

 



vii 
 

TABLE OF CONTENTS 

 

 

 Page 

DECLARATION iii 

ACKNOWLEDGEMENTS iv 

ABSTRACT v 

ABSTRAK  vi 

TABLE OF CONTENTS vii 

LIST OF TABLES xiv 

LIST OF ILLUSTRATIONS xvi 

LIST OF ABBREVIATIONS xix 

   

CHAPTER I INTRODUCTION 

1.1 Introduction 1 

1.2 Research Background 1 

1.3 The Problem Domain: Scalable Game Environments 4 

 1.3.1 The Research Problem: Lack of Fixed States and 

Deterministic Rules in Scalable Game 

Environments 

5 

 1.3.2 Justification for a New Agent Framework 6 

 1.3.3 The Research Gap: Inability to Translate Varied 

External Feature States to Internal Feature States 

6 

1.4 Research Questions 8 

1.5 Research Objectives 10 

1.6 Methodology For Achieving The Research Objectives 10 

1.7 Research Scope 12 

1.8 Chapter Outline 16 

   

  



viii 
 

CHAPTER II LITERATURE REVIEW 

2.1 Introduction 19 

2.2 The Computer And Video Games Industry 20 

2.3 Artificial Intelligence In Games 21 

 2.3.1 Game AI research directions: Realism vs. 

Intelligence 

22 

 2.3.2 Agents: The embodiment of autonomous AI in 

games 

26 

2.4 Scalable Game Environments 30 

 2.4.1 Complexity from Uncertainty in Scalable Game 

Environments 

33 

 2.4.2 Complexity in Scaling Game AI 36 

 2.4.3 General Game Playing (GGP) for Scalable AI 

Agents 

39 

 2.4.4 What is needed: AI Agent Frameworks That Can 

Operate in Scalable Game Environments 

40 

2.5 Insight To A Solution: Internalizing Values 41 

2.6 Discovering What Is Needed: Theories On How 

Emotions Affect Behaviour During Problem-Solving 

44 

 2.6.1 Elements From The Cognitive Structure Of 

Emotions That Contribute Towards Behavioural 

Affect 

48 

 2.6.2 Elements From The Somatic Marker Hypothesis 

That Contribute Towards Behavioural Affect 

52 

2.7 Current Application Of Emotion Theory For Achieving 

Behavioural Affect During Problem Solving 

57 

2.8 Overview Of Affective Computing 60 

 2.8.1 Emotional Characters 61 

 2.8.2 Emotional Problem-Solvers 61 

 2.8.3 Types of Agents in Affective Computing 

Research 

62 

 2.8.4 Using Affective Agents to Play in Scalable Game 

Environments 

63 

 2.8.5 Current Affective Decision Making Research in 

Games 

64 

 2.8.6 The Problem with Existing Affective Agent 

Frameworks 

69 

 2.8.7 Homeostats and Affective Homeostasis 70 



ix 
 

 2.8.8 Current Application of Homeostats to Represent 

Emotional and Affective Agent Behaviour 

74 

2.9 Analysis Of Existing Implementations Of Emotional 

Affect For Agent Decision-Making 

79 

 2.9.1 Analysis of the Cognitive Structure of Emotions 80 

 2.9.2 Analysis of the Somatic Marker Hypothesis 81 

2.10 Obstacles: Issues Arising From The Application Of 

Emotion Theory In Behavioural Affect During Problem 

Solving 

82 

2.11 Discussion 86 

 2.11.1 Lessons Learnt for the Design of an Affective 

Agent Framework 

87 

 2.11.2 Analysis of the Research Gap 89 

   

CHAPTER III RESEARCH METHODOLOGY 

3.1 Introduction 91 

3.2 Methodology And Research Phases 91 

3.3 Problem Domain Specification 94 

 3.3.1 The Problem in Detail: The Nature of Agent 

Interaction in Games 

96 

3.4 Theory Formulation 98 

3.5 Framework Design 101 

 3.5.1 Fulfilling Requirement 1: Determining Good and 

Bad within Feature Value Ranges 

104 

 3.5.2 Fulfilling Requirement 2: Approximating 

Knowledge Models for Unknown Evaluation 

Functions 

109 

 3.5.3 Fulfilling Requirement 3: Predicting Outcomes 

from Approximated Knowledge Models 

114 

 3.5.4 Fulfilling Requirement 4: Deciding Knowledge 

Model Significance 

117 

 3.5.5 Making Affective Decisions 123 

3.6 Component Testing 128 

3.7 Assembly And Holistic Testing 132 



x 
 

 3.7.1 Justifications for Using Non-Standard 

Experiments in Affective Agent Testing 

133 

3.8 Activities For Achieving The Research Objectives 134 

 3.8.1 Activities for achieving Objective 1: Designing 

the Affective Agent Framework 

135 

 3.8.2 Activities for Achieving Objective 2:  Develop a 

Principal Experiment that Simulates a Scalable 

Game Environment. 

136 

 3.8.3 Activities for Achieving Objective 3:  Establish 

the Ideal Operating Environment for the Affective 

Agent Framework 

136 

3.9 Conclusion 137 

   

CHAPTER IV AN AFFECTIVE AGENT FRAMEWORK FOR 

SCALABLE GAME ENVIRONMENTS 

4.1 Introduction 139 

4.2 Fulfilling Objective 1 139 

4.3 Affective Agent Functional Requirements 141 

4.4 Overview Of The Affective Agent Framework 142 

 4.4.1 Producing the New Affective Agent Framework 142 

4.5 External Component: Agent Input Data 149 

4.6 Core Components: The Affective Decision Making 

Engine 

151 

 4.6.1 Agent Initialization and Agent Parameters 153 

 4.6.2 LOOK functions component 156 

 4.6.3 Knowledge Model Matrix Manager 159 

 4.6.4 EVALUATE function component 165 

 4.6.5 Knowledge Model Approximator 167 

 4.6.6 Affect Homeostat 174 

 4.6.7 CHOOSE Function Component 181 

4.7 Agent Output 189 

4.8 Validation 191 

4.9 Conclusion 193 

   



xi 
 

CHAPTER V PRINCIPAL EXPERIMENTS ON AFFECTIVE DECISION 

MAKING 

5.1 Introduction 194 

5.2 Requirements For A Principal Experiment In Scalable 

Games 

194 

5.3 Principal Experiment: Scalable Whack-A-Mole 195 

 5.3.1 Significance of the Principal Experiment 200 

5.4 Experimental Setup 202 

 5.4.1 Objective of the Experiments 206 

 5.4.2 Parameter Settings for the Affective Agent 

Framework 

209 

 5.4.3 Benchmark Agents and Configuration 211 

 5.4.4 Performance Measures 217 

5.5 Experiment Methodology 218 

 5.5.1 Control Tests 223 

5.6 Test 1: Single-Rule Adaptation In Scalable Games 223 

5.7 Test 2: Multi-Rule Adaptation In Scalable Games 225 

5.8 Test 3: Goal Balancing In Scalable Games 227 

5.9 Conclusion 229 

   

CHAPTER VI ANALYSIS OF RESULTS FOR ESTABLISHING THE 

IDEAL OPERATING ENVIRONMENT FOR THE 

AFFECTIVE AGENT FRAMEWORK 

6.1 Introduction 231 

6.2 Analysis Of Results 231 

6.3 Results Of Test 1 (Single Rule Adaptation) 232 

 6.3.1 Analysis of Affective Agent Performance in Test 

1 

234 

 6.3.2 Accuracy of the Affective Agent's Decision 

Making in Test 1 

235 

 6.3.3 Component Exclusion Test: The Knowledge 

Model Approximator (KMA) 

237 



xii 
 

6.4 Results Of Test 2 (Multi-Rule Adaptation) 237 

 6.4.1 Analysis of Affective Agent Performance in Test 

2 

240 

 6.4.2 Accuracy of the Affective Agent's Decision 

Making in Test 2 

241 

 6.4.3 Component Exclusion Test: The Knowledge 

Model Matrix Manager (KMM) 

243 

6.5 Results Of Test 3 (Goal Balancing) 244 

 6.5.1 Analysis of Affective Agent Performance in Test 

3 

247 

 6.5.2 Accuracy of the Affective Agent's Decision 

Making in Test 3 

248 

 6.5.3 Component Exclusion Test: The Affect 

Homeostat (AH) 

250 

6.6 Summary Of Analysis 251 

6.7 Fulfilment Of Objective 3 251 

6.8 Complexities In Problem Solving Within Scalable Game 

Environments 

252 

 6.8.1 Uncertainty in Problem Solving Due to Hidden 

Rules 

253 

 6.8.2 Uncertainty in Problem Solving Due to 

Dynamism in States and Actions. 

254 

 6.8.3 Uncertainty in Problem Solving Due to Shifting 

Goals and Priorities 

255 

6.9 The Ideal Operating Environment For Affective Agents 256 

6.1 Importance Of Affect In Decision Making 257 

 6.10.1 Generation of Knowledge Models as Affect 258 

 6.10.2 Filtration of Knowledge Models as Affect 258 

 6.10.3 Homeostatic Goal-Balancing as Affect 259 

6.11 When Not To Use Affective Decision Making 259 

6.12 Conclusion 261 

   

CHAPTER VII CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 262 

 7.1.1 Fulfilling Objective 1: Propose an Affective 

Agent Framework for Decision Making in 

264 



xiii 
 

Scalable Game Environments 

 7.1.2 Fulfilling Objective 2: Develop a Principal 

Experiment for Benchmarking Adaptation Under 

Uncertainty in Scalable Game Environments 

266 

 7.1.3 Fulfilling Objective 3: Establish the Ideal 

Operating Environment for Problem Solving with 

the Affective Agents 

266 

7.2 Contributions 268 

 7.2.1 Contribution from Objective 1: Plug-in Affective 

Decision-Making A.I. Module for NPCs in games 

and other intelligent agents. 

268 

 7.2.2 Contribution from Objective 2: The Scalable 

Whack-A-Mole Game as a Customizable 

Platform for Benchmarking Adaptive Agents 

268 

 7.2.3 Contribution from Objective 3: Affective 

Decision-Making as a Precursor to Machine 

Learning in Completely New Environments 

269 

7.3 Benefits Of The Affective Agent Framework 269 

7.4 Potential Applications For The Affective Agent 

Framework. 

270 

7.5 Outstanding Issues 271 

7.6 Impact Of The Research 272 

7.7 Future Work 273 

 7.7.1 Using Spline Regression for Approximating 

Knowledge Models 

273 

 7.7.2 Representing Knowledge Models as Spline 

Hyperplanes 

274 

 7.7.3 Research into Packaging the Affective Agent 

Framework as 'Plug-In' Intelligence 

274 

   

REFERENCES 275 

 

 



xiv 
 

LIST OF TABLES 

 

 

Table No.  Page 

Table 1.1 Most common A.I techniques for NPCs 3 

Table 2.1 Game genres and AI roles, problems and research 23 

Table 2.2 Common roles of AI in games and associated research 24 

Table 2.3 Most frequently used decision-making algorithms for A.I game 

agents. 

27 

Table 2.4 Comparison of existing affective agent frameworks. 70 

Table 2.5 Agent framework that use homeostats to represent emotions 

and affect. 

75 

Table 4.1 Affective agent components that fulfil the functional 

requirements for affective agent decision making. 

149 

Table 5.1 Differences between the original Whac-A-Mole game and the 

Scalable Whack-a-Mole game 

196 

Table 5.2 Scalable Whack-a-Mole player configuration and experiment 

schedule 

206 

Table 6.1 Comparative Benchmark Performance of Control and Agents in 

Test 1 

232 

Table 6.2 Benchmark performance comparison in Test 1: Affective 

agents vs. other agent types 

234 

Table 6.3 Mean Square Error of affective agent's knowledge models in 

Test 1 

236 

Table 6.4 Comparative Benchmark Performance of Control and Agents in 

Test 2 

238 

Table 6.5 Benchmark performance comparison in Test 2: Affective 

agents vs. other agent types 

240 

Table 6.6 Mean Square Error of affective agent's knowledge models in 

Test 2 

242 

Table 6.7 Comparative Benchmark Performance of Control and Agents in 

Test 3 

244 

  



xv 
 

Table 6.8 Benchmark performance comparison in Test 3: Affective 

agents vs. other agent types 

247 

Table 6.9 Mean Square Error of affective agent's knowledge models in 

Test 3 

250 



xvi 
 

LIST OF ILLUSTRATIONS 

 

 

Figure No.  Page 

Figure 2.1 Literature Review Topics 20 

Figure 2.2 Scalable Game Environments and Scalable Game 

Architectures. 

31 

Figure 2.3 Static game environments vs. Scalable game environments. 32 

Figure 2.4 FSM-based agent responses to game environment encounters. 36 

Figure 2.5 An NPC travelling from one game area to another is 

reinitialized using a new agent framework, while preserving the 

NPC‟s properties. 

38 

Figure 2.6 The Prisoner‟s Dilemma Game-Theory Matrix 42 

Figure 2.7 The OCC model of emotions. 50 

Figure 2.8 The „Body-loop‟ and „As-if body-loop‟ 55 

Figure 2.9 General architecture of weighted emotional appraisal and 

behavioural association methods of affective decision-making. 

65 

Figure 2.10 General architecture of drive-model emotional appraisal and 

behavioural association methods of affective decision-making. 

67 

Figure 2.11 Illustration of W. Ross Ashby‟s Homeostat 71 

Figure 2.12 A homeostatic vector, the basic building block of affective 

homeostats. 

78 

Figure 2.13 Manual association of feature value ranges to control transitions 

between emotional states 

81 

Figure 3.1 Activities involved in each phase of the research methodology. 92 

Figure 3.2 Outcome graphs representing three different knowledge 

models. 

95 

Figure 3.3 General intelligent agent framework 102 

Figure 3.4 Conceptual affective agent framework. 103 

Figure 3.5 Establishing utility preference with common vs. uncommon 

features. 

106 



xvii 
 

Figure 3.6 Goal-directed utility assignment. 108 

Figure 3.7 Graphs plotting each of the three known evaluation functions, 

using an increment step=1. 

110 

Figure 3.8 Approximating knowledge models of unknown evaluation 

functions. 

111 

Figure 3.9 Approximated knowledge model from past experience. 115 

Figure 3.10 Plurality of knowledge models. 118 

Figure 3.11 Filtering knowledge models. 121 

Figure 3.12 Internal feature value change due to sequential Agent/Opponent 

moves. 

124 

Figure 3.13 Summary of the affective homeostat‟s operation. 127 

Figure 3.14 Preliminary affective agent framework. 128 

Figure 4.1 Reference intelligent agent framework 143 

Figure 4.2 The ALEC affective agent as the primary reference framework 

design 

144 

Figure 4.3 The preliminary design for the ADME affective agent 

framework 

145 

Figure 4.4 The Affective Agent Framework 146 

Figure 4.5 UML Class diagram for the agent LOOK functions. 156 

Figure 4.6 Recalling knowledge model indexes (AGF index) 158 

Figure 4.7 UML Class diagram for the Knowledge Model Matrix 

Manager. 

159 

Figure 4.8 Conceptual view of the Knowledge Model Matrix 159 

Figure 4.9 Physical implementation view of the Knowledge Model Matrix. 161 

Figure 4.10 Finding similar known inputs from unknown inputs using 

simplified lexical scoring. 

163 

Figure 4.11 UML Class diagram of the EVALUATE function. 165 

Figure 4.12 UML Class diagram for the Knowledge Model Approximator. 167 

Figure 4.13 Plot of the game rule “PUNCH” when (a) opponent.defence = 5 

and (b) opponent.defence in between 0 to 10. 

169 



xviii 
 

Figure 4.14 UML Class diagram for the Affect Homeostat. 174 

Figure 4.15 Selection of actions through approximated knowledge models. 176 

Figure 4.16 UML Class diagram for the CHOOSE function. 181 

Figure 4.17 Desired direction of change for h-values. 188 

Figure 4.18 Pseudocode for integrating an affective agent as a player into a 

game. 

190 

Figure 5.1 Pictures of the arcade Whac-A-Mole machine and playing 

style. 

196 

Figure 5.2 The Scalable Whack-A-Mole game interface 197 

Figure 5.3 Example of a Markov Chain for a probabilistic Whac-A-Mole 

game 

200 

Figure 5.4 Human playable version of the Scalable Whack-a-Mole game 203 

Figure 5.5 Agent playable version of the Scalable Whack-a-Mole game 204 

Figure 5.6 Initial version of the Scalable Whack-a-Mole game (5x5 grid) 219 

Figure 5.7 Scaled-up version of the Scalable Whack-a-Mole game (10x10 

grid) 

219 

Figure 6.1 Affective agent's knowledge models for Hidden Rule 1 in Test 

1 

235 

Figure 6.2 Affective agent's knowledge models for Hidden Rule 2 in Test 

1 

236 

Figure 6.3 Affective agent's knowledge models for Hidden Rule 1 in Test 

2 

241 

Figure 6.4 Affective agent's knowledge models for Hidden Rule 2 in Test 

2 

242 

Figure 6.5 Affective agent's knowledge models for Hidden Rule 1 in Test 

3 

249 

Figure 6.6 Affective agent's knowledge models for Hidden Rule 2 in Test 

3 

249 

Figure 7.1 Affective Agent Framework based on the Affective Decision 

Making Engine (ADME) 

265 

Figure 7.2 The Scalable Whack-a-Mole game 266 

 



xix 
 

LIST OF ABBREVIATIONS 

 

 

3GL Third-Generation Programming Language 

A* A-Star Search 

A.I. Artificial Intelligence 

AAAI Association For The Advancement Of Artificial Intelligence  

ADME Affective Decision-Making Engine  

AF ADME-based Affective Agent 

AH Affect Homeostat 

AI  Artificial Intelligence 

ALEC  Asynchronous Learning By Emotion And Cognition Architecture 

AM Affect Matrix 

API Application Programming Interface  

AV Affect Value 

BDI  Belief-Desire-Intention 

COOP Cooperate 

DARE  Emotion-Based Robotic Agent Development Architecture 

DEF Defect 

DLC Downloadable Content 

EB Emotion-Based Architecture 

EF External Features 

EMAI  Emotionally Motivated Artificial Intelligence 

FPS  First-Person Shooters 

FRGS Fundamental Research Grant Scheme 

FSM Finite State Machine 



xx 
 

FTSM Fakulti Teknologi Dan Sains Maklumat 

GDL Game Description Language 

GGP General Game Playing  

HCI  Human-Computer Interface 

HUMAN Human Players 

IF Internal Features 

IPD Iterated Prisoner‟s Dilemma  

IPOMDP  Infinite Partially Observable Markov Decision Process 

KM Knowledge Model 

KMA Knowledge Model Approximator 

KMM Knowledge Model Matrix Manager 

MDP Markov Decision Process  

MMORPG Massively-Multiplayer Online Role-Playing Games  

MSE Mean Square Error  

NPC Non-Player Characters 

NSMD N-State Markov Decision State-Transition Agent  

OCC  Ortony-Clore-Collins Model Of Emotions 

ORIENT  Overcoming Refugee Integration With Empathic Novel Technology 

POMDP Partially Observable Markov Decision Process 

QL Q-Learning Adaptive Agent  

RL Reinforcement Learning  

RPG Role-Playing Games  

SDK  Software Development Kit 

SHMUPS  Shoot-Em-Up Games 



xxi 
 

SP Simple Probabilistic State-Transition Agent  

SST Sum Of Squared Totals 

TnHnRn Test N, Hidden Rule N, Round N 

TD Temporal Difference  

TDL Temporal-Distance Learning Agent  

UKM Universiti Kebangsaan Malaysia 

UML Unified Modelling Language 

 

 

 



 

 

 

CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

 This research aims to improve the adaptability of artificially intelligent virtual 

players, which are called 'Non-Player Characters' or NPCs, in computer games. 

Modern computer games frequently expand their game environment, either by adding 

new content or changing existing content.  Programming an NPC to make decisions in 

such scalable game environments is difficult because it is impossible to know what 

future content or change will be introduced in the game.  The problem that arises from 

this is the lack of fixed external states and known deterministic rules, which are 

required by the NPC to act as the basis of A.I decision making. The problem that 

needs to be solved is how to program a decision making algorithm for NPCs that does 

not require fixed external states, so that it can adapt to any future change to the game 

environment.  The solution chosen by this research is to create a new agent framework 

for NPCs that emulates the biological process of emotional affect, in order to 

internalize the problem states and adapt its own internal rules using emotions.  An 

affective agent framework based on these internalized states and rules will allow the 

NPC to identify what is important, regardless of how the game environment may 

change in the future. 

 

1.2 RESEARCH BACKGROUND 

 

The computer and video games industry has reached a market share of USD 

$137.9 billion (RM 569.87 billion) globally in April 2018 (Ell 2018), which represents 

a 112.15% increase since the first video game industry report was first released in 
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June 2011 (Bilton 2011).  The sheer size of the industry has catalyzed the need for the 

application of new technology to make games more entertaining, engaging, and 

immersive to the human player.  Artificial intelligence is one such technology that has 

been applied to computer and video games with greater frequency since the turn of the 

century,  (Yannakakis & Togelius. 2018). 

 

Artificial inteligence and machine learning techniques have been used in 

computer and video games as early as the 1950s (Shannon 1950, Rosales-Pulido 

2016), to provide entertainment and challenge to the people who play these games. 

Modern computer games implement artificial intelligence for two primary reasons 

(Laird and van Lent 2001; Petrović 2018): 

 

1. Realism - To simulate real-world phenomenon in games in order to make the 

game more realistic and enhance the illusion of reality. 

 

2. Intelligence - To control the behaviour or computer generated virtual players, 

by emulating cognitive processes, in order provide challenge to the human 

player in the game environment. 

 

 'Non-Player Characters', or NPCs, are artificially intelligent software agents 

that embody these A,I. techniques, particularly in the form of computer-controlled 

game characters that interact with human players in the game (Millington & Funge 

2009; Yannakakis & Togelius. 2018). These NPCs are programmed to exhibit the 

properties of intelligent agents, which are Persistence, Autonomy, Social Ability, and 

Reactivity (Woolridge 2002; Dignum et al. 2009).  In a computer game, NPCs are the 

A.I players in games that acts as opponents, supporting characters, bystanders, 

animals, vehicles, and others.  The use of A.I. driven NPCs in modern.  The most 

common A.I algorithms for programming NPCs are summarized in Table 1.1 

(Millington and Funge 2009): 
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Table 1.1 Most common A.I techniques for NPCs 

 

Algorithm  General Technique  Earliest Examples  Modern Games  Requirements  

Finite State 

Machines 

(FSM)  

Evaluate the problem 

state condition before 

transitioning to a new 

behavioural state.  

 Moore machines 

(Moore 1956, 

Staddon 2016)  

 Mealy machines 

(Mealy 1955, 

Vaandrager 

2017)  

 Doom (2016)  

 Destiny 2 (2017) 

 Fully 

observable 

states (i.e. 

complete 

information)  

 Determinism  

Reinforcement 

Learning  

Apply reward or 

penalties to action 

choices, according to 

the degree of goal 

fulfilment.  

 Q-learning 

(Watkins 1989, 

Zaremba et al. 

2016)  

 TD Learning 

(Sutton 1988, 

Hertz et al. 

2018)  

 Sid Meier‟s 

Civilization VI 

(2016) 

 FIFA 18 (2017) 

 Fixed choices 

and elements 

(e.g. the same 

actions or 

objects are 

always 

available)  

Decision Trees  Simulate all possible 

move combinations 

up to n-ply and 

evaluate outcomes of 

leaf nodes.  

 ID3 (Quinlan 

1986, Wu et al. 

2016)  

 C4.5 (Quinlan 

1993, Witten et 

al. 2016)  

 Warhammer 40k: 

Space Wolf 

(2014) 

 XCOM 2 (2016) 

 Fully 

observable 

states (i.e. 

complete 

information)  

 Determinism  

Search  Simulate path 

movement and 

propagate reward or 

error to paths that 

reach closer to goals.  

 A* (Hart et al. 

1968, Bast et al. 

2016)  

 Minimax (von 

Neumann 1928, 

Aumann 2017)  

 Ashes of the 

Singularity 

(2016) 

 Warhammer 40k: 

Dawn of War III 

(2017) 

 Fully 

observable 

states (i.e. 

complete 

information)  

 Determinism 

 

Source: Millington and Funge 2009 

 

The A.I techniques listed Table 1.1 are the most preferred by the majority of 

game publishers for practical reasons: these A.I techniques are easy to program by 

NPC programmers, are subsequently easy to change and edit should the need arise 

(Millington and Funge 2009). It is also very simple to explain the decisions made by 

NPCs using these A.I algorithms.  Therefore, if the behaviour of a particular NPC 

needs adjustment, then it is very easy for the NPC programmer to reconfigure the 

parameters of these A.I techniques to produce the desired behaviour. 

 

Table 1.1 also shows the requirements for the effective use of these A.I. 

algorithms.  In order to program the NPC to behave as intended, these A.I techniques 

all universally require the game environment to be fully observable, fixed and 

unchanging, and that the rules governing the behaviour of objects and interaction in 

the game to be fully known and deterministic.   
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1.3 THE PROBLEM DOMAIN: SCALABLE GAME ENVIRONMENTS 

 

The difficulty that is faced by programmers that create and program NPCs for 

computer games is that modern computer games frequently expand beyond its initial 

design parameters, often for the purpose adding new content to the game in order to 

keep the human player entertained (Yannakakis & Togelius. 2018).  For example. 

Figure 1.1 shows how one of the most popular games in ever created, World of 

Warcraft (2004), has been expanded at least six times over the span of 14 years in 

order to keep its peak player base of 12 million concurrent players entertained with 

new content. 

 

 

Figure 1.1: Expanding video games with new content 

Source: World of Warcraft, 2004 

 

The common A.I algorithms used in current NPC design also face problems if 

the game arena dynamically changes over time, either through randomization, or due 

to some unknown rule that governs the change, which is hidden from NPCs view.  

This research coins the term "Scalable Game Environments" to describe these type of 

games.  Scalable game environments are games that change its game play 'arena' over 

time by introducing new play areas, new game rules, new objects, new challenges, and 

new opponents, or by being highly dynamic.   
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1.3.1 The Research Problem: Lack of Fixed States and Deterministic Rules in 

Scalable Game Environments 

 

Whenever the objects in a game's environment change, the game can be said to 

experience a 'state-change'.  If the number of all possible state-changes are finite, and 

if the change in the game state is governed by some known permanent rule, the game 

can be said to have 'fixed states and deterministic rules' (Russell and Norvig 2015).  

The common A.I techniques used for NPCs can operate perfectly well under these 

conditions as they meet the requirements stated in Table 1.1.   

 

However, if a game expands by constantly adding new content (i.e. objects) to 

the game environment, then the number of all possible state-changes increase, until 

they become seemingly infinite.  Furthermore, if the rules that govern changes in 

game states are not known, or hidden from view, then the game can be said to 'lack 

fixed states and deterministic rules'.  This is main problem introduced by scalable 

game environments, that needs to be solved in this research.  

 

The common A.I. techniques used in NPCs all requires the game environment 

to have fixed observable (i.e. external) state. Each game state is used as a basis for 

iterative reinforcement and iterative classification by the A.I. techniques. If there is an 

unlimited number of possible game states, however, then the A.I techniques cannot 

repeat or experience the same game state more than once.  This inhibits the algorithms 

ability to iteratively reinforce or iteratively classify  better action choices based on 

these game states. 

 

All scalable game environments lack fixed external states and deterministic 

rules. This problem will effectively prevent the common A.I techniques from 

reinforcing, classifying, or modelling the game environment.  This characteristic of 

scalable game environments will effectively cause the NPCs to 'break' and fail due to 

the lack of information needed by its algorithm to function properly. 
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1.3.2 Justification for a New Agent Framework 

 

In order to make decisions in a scalable game environments that are constantly 

changing with new content and dynamic rules, an NPC would have to rely on an 

internalized state evaluation system in order make decisions.  This internalized state 

evaluation system would have to do the following: 

 

1. The NPC will need a set of persistent internal features, which are part of its 

agent framework, which will become the basis of a state-evaluation and 

performance measurement. 

 

2. The NPC would need to self-generate a set of rules to discover how to 

„translate‟ the utility values of the non-persistent external features from the 

game, to utility values of its own persistent internal features. 

 

3. Upon receiving any external stimuli, the NPC would need to predict the 

change to expected future utility of its own persistent internal features, and 

make a decision on an action choice. 

 

At present, there does not yet exist an intelligent agent framework, which can 

be used to build NPCs, that relies solely on internalized feature states for making 

decisions.  Therefore existing agent frameworks for NPCs that rely on the common 

A.I algorithms listed in Table 1.1 is bound to perform poorly in scalable game 

environments. 

 

1.3.3 The Research Gap: Inability to Translate Varied External Feature States 

to Internal Feature States 

 

The values of each feature that is entered as input into an artificial intelligence 

algorithm, as part of its decision-making evaluation function, represents the utility 

value that the feature holds (Haykin 1999; Zhang & Suganthan 2016).  Two different 

feature types will hold different utility ranges, each with a different semantic value 

meaning.  On their own, two separate feature types do not have a common utility 
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denomination.  This is not usually a concern if the total number of feature types are 

fixed and known in a problem environment, like a game.  The agent designer would 

manually provide the common utility denomination for the A.I algorithm used in the 

agent's framework, in the form of a weighted utility evaluation function (Haykin 1999; 

Zhang & Suganthan 2016). 

 

However, in a scalable game environment these different feature types change 

over time, often leaving no opportunity for the agent designer to manually set feature 

weights, or no time for the agent to learn new weights through iterative 

reinforcements.  The main cause of this is that the scalable game environment changes 

too quickly for the agent to experience the feature long enough for reinforcement to 

occur.  Therefore, a common utility denomination in the form of a weight utility 

evaluation function, cannot be adequately constructed.  This is the research gap that 

this research intends to fill. 

 

The approach that is taken by this research to fill this research gap is to use 

affective computing techniques (Picard 1997; Fairclough 2017) in the agent's 

framework design.  The intention is to give an NPC an internalized body state based 

on emotional affect, which can be used by the NPC as the basis and common 

denomination for making decisions in a highly dynamic scalable game environments.  

By fulfilling this research gap, an agent based on affective computing techniques, i.e. 

an affective agent, can be thrown in any untrained situation and still make rational 

decisions based on how it feels internally. 

 

As it is not the aim of this research to discover the exact emotional affect 

phenomenon that contributes to better decisions, the research will model the agent‟s 

decision-making algorithm based on an existing model and theory of emotional affect.  

The Somatic Marker Hypothesis (Damasio 1996; Kanbara & Fukunaga 2016), which 

is the emotional affect model used for this research, posits that emotional affect 

contributes to better decisions by: 
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1. Recording a feeling of what happens to the body upon experiencing stimuli 

 

2. Invoking the feeling of what happens to the body in anticipation of the 

experienced stimuli 

 

3. Altering the value of decisions that either promote or avoid the recurrence of 

the feeling. 

 

A more detailed treatise of the Somatic Marker Hypothesis can be found in 

Chapter 2.  These characteristics of emotional affect can be directly translated to a set 

of functional component for discorporate game agents (i.e. agents that lack bodies) as 

follows: 

 

1. Identify how features in the game environment determine goal outcomes. 

 

2. Predict how goals outcomes will change from the game environment features 

 

3. Evaluate actions by determining which goals are important. 

 

1.4 RESEARCH QUESTIONS 

 

In the pursuit of an agent framework that will allow agents to adapt to new 

elements introduced in scalable game environments, while at the same time being able 

to make good decisions, the primary question this research now asks is as follows: 

 

RQ1: “What are the necessary agent components that are required to emulate the 

benefits of emotional affect when making decisions, which will allow game AI 

agents to operate well in scalable game environments?” 

 

From this question, this research aims to discover the simplest possible design 

for an agent framework that can mimic the benefits of emotional affect in decision 

making. This question focuses on the functional characteristics observed from 

emotional affect that must be mirrored in the components of an agent decision making 
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algorithm. The resulting components must be implementable in an agent framework 

that will be used to generate NPC agents that operate in scalable game environments.    

 

To properly simulate a scalable game environment, it would be intractable to 

use an actual full-fledged computer game to test the new agent framework for NPCs, 

due to the sheer number of variables that are involved a commercial computer game.  

It would also me completely impractical to use the standard game experiments for 

machine learning (e.g.  Chess, Go, Backgammon, Blackjack, Checkers, Poker and 

others) as there are other more efficient methods such search, classification, and 

reinforcement learning that already perform admirably in these tests.  Instead a proper 

experiment must be small enough, with the fewest number of variables to simulate a 

scalable game environment.  But at the same time it must be sufficiently complex to to 

be able to observe an agent's adaptability in a highly dynamic environment.  From 

this, a second research question is derived: 

 

RQ2: "What is the smallest experiment that can be used to simulate a scalable game 

environment, and measure an agent's adaptability to dynamism?" 

 

This research does not assume that an agent framework based on affect will be 

suitable for all possible eventualities in a scalable game environment.  As mentioned 

in Section 1.2 simpler AI methods have proven to be preferable when the game is 

deterministic (Millington & Funge 2009; Yannakakis & Togelius. 2018).  Therefore, a 

third  research question is posed here: 

 

RQ3: “In what types of scalable game environments would the use of emotional 

affect for decision making allow agents to make better decisions compared to 

using other decision making methods?” 

 

This question focuses on the exact operational conditions which would 

necessitate the use of emotional affect for making decisions.  By uncovering the 

specific operational conditions, the potential applications of the affective agent 

framework or the affective decision making algorithm, beyond entertainment and 

computer games, can be revealed. 
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1.5 RESEARCH OBJECTIVES 

 

The aim of this research is to answer the research questions posed in Section 

1.4.  The specific objectives of this research are: 

 

1. To propose an affective agent framework with components that emulate 

emotional affect for decision making in scalable game environments. 

 

2. To develop a principal experiment that simulates the complexities of scalable 

game environments for benchmarking agent performance. 

 

3. To establish the ideal operating environment where the affective agent 

framework has greater utility compared to other agent types. 

 

1.6 METHODOLOGY FOR ACHIEVING THE RESEARCH OBJECTIVES 

 

The first objective is undertaken through the development of an object-

oriented agent class in the form of an application programming interface (API) for the 

generation of software agents.  This research focuses on the implementation of the 

affective agent class API for use in computer games written in third-generation 

programming languages (3GL).  However, the design of the affective agent 

framework in this research is expected to be applicable in other class-type 

programming structures available in any object-oriented programming language.  

Furthermore, the affective agent framework is intended to be potentially applicable to 

other problem-solving domains, beyond computer games, that meet the criteria of the 

ideal operating environment outlined for the third objective.   

 

To achieve the first objective, the affective agent framework must be built 

around a core decision making algorithm that emulates the process of emotional affect 

during problem solving.  The specific functional characteristics that must be exhibited 

by this core decision-making algorithm involves the undertaking of the following 

activities: 
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i. Design and develop a component in affective agent‟s core decision-making 

algorithm that allows the agent to „feel‟ how the present game environment 

affects the agent in real-time.  The component should accomplish this by 

discovering how features of objects in the game environment affect the agent‟s 

goals. 

 

ii. Design and develop a component in the affective agent‟s core decision-making 

algorithm that allows the agent to „emotionally override‟ its perception on 

what is important in real-time.  The component should accomplish this by 

managing the priority of the agent‟s goals and altering its evaluation of the 

game environment based on goal priorities. 

 

The end result of achieving these functional characteristics, and ultimately the 

first objective, will be the development of an algorithm that emulates the process of 

emotional affect in decision making.  This research intends the affective decision-

making algorithm to be used as part of the affective agent framework, and only 

explores the utility of the algorithm in relation to the implementation of the affective 

agent framework.  Even so, the algorithm can be used independently from the 

affective agent framework and applied as an additional decision-making component or 

sub-procedure other software agent frameworks or even physical mechanisms like 

robots, to make motivated decisions in unfamiliar and untrained situations.   

 

The allowance for the portability of the affective decision-making algorithm is 

provided since there will be situations in which simpler and less-complex decision 

making algorithms are sufficient and preferable.  Therefore the affective decision 

making algorithm is designed to complement and work alongside other decision 

making algorithms in more advanced agent designs.  In terms of implementation, the 

design of the affective decision-making algorithm must be simple enough that it can 

be integrated easily as a subcomponent for decision making in other game playing 

agents types.  The problem domain in which the affective decision making algorithm 

will supersede other algorithms is explored in the third objective.   
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To achieve the second objective, modern computer games that expand in 

content cannot be used as they are too massive in content to be practical for observing 

an agent's adaptability to new dynamic situations.  Therefore the only practical way to 

achieve the second objective is to build a new 'minimal' game that is small enough fo 

agent benchmarking and analysis.  At the same time, the dynamic component of the 

game must also involve the fewest variables in order to properly attribute the ability of 

the agent to adapt to scalable game environments to the agent framework's underlying 

A.I. algorithm, rather than some coincidental external factor. 

 

The third objective is concerning the identification of the type or class of 

problem where affective decision-making has the most use.  To achieve this third 

objective, the operation of the affective decision-making algorithm under empirical 

testing is scrutinized.  Specifically, the questions that must be answered by the third 

objective are as follows: 

 

i. What types of problem would require the use of affective decision making? 

 

ii. When should affective decision making not be used?  

 

It must be noted, however, that it is not the objective of this research to 

produce new theories on how emotions can become rational or even theories on how 

emotions can influence rational behaviour.  Neither is it to objective of this research to 

either prove or disprove particular psychological or cognitive theories on emotions 

and how it influences behaviour.  Instead, both objectives of this research focus on the 

emulation of reported emotional theories in AI heuristics, such that an alternative to 

rational or utilitarian algorithms can be produced. 

 

1.7 RESEARCH SCOPE 

 

The scope of this research is to create an agent framework for NPCs based on 

affect and test the affective agent framework in a simulated scalable game 

environment.  The performance of affective agent will be benchmarked against the 
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performance of agent frameworks that use the common A.I. algorithms shown in 

Table 1.1.  

 

As specified in research objectives outlined in Section 1.5, the research will be 

primarily concerned with the development of an affective agent framework, and the 

specification of the exact problem domain in which the affective decision making 

algorithm will have greater utility compared to traditional game AI algorithms.  An 

existing model of emotional affect from neuroscience, as it pertains to the role of 

affect in reasoning, will be employed as the primary guideline for the construction of 

the affective agent framework.  Specifically, the emotional affect model adopted for 

this purpose is the „As-If Body Loop Model‟ developed to support the „Somatic 

Marker Hypothesis‟ theorised by Damasio (1994)(Lopez-Franco et al. 2018), and is 

described in further detail in Chapter 2 of this thesis.   This model is chosen as it is 

outlines the specific roles of emotional affect from the perspective of the physiological 

function of emotions in affecting decisions. The physiological functions of affect 

described by the Somatic Marker Hypothesis can be readily mirrored and translated 

into the exact computational functions that need to be achieved in the affective agent 

framework.  It is the emulation of these functions of affect in an agent, and the 

evaluation of its utility in decision making in games that is the focus of this research. 

 

It is not the role of this research to debate whether the emotional affect model 

employed in the affective agent framework is the best among other existing models of 

emotions available in academic literature.  In other words, this research will not 

undertake a comparison of how well the different models of emotional affect fare 

amongst each other in a competition of performance.  Rather, this research hopes to 

answer how emotional affect can be emulated by AI agents, and in what types of 

problem should affective decision making be used by AI agents. 

 

The scope for the first objective covers the following activities: 

 

1. The identification of the specific function of emotional affect that can be 

instrumental for the formation of decisions. 
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2. The design of the agent framework components that duplicate the specified 

functions of emotional affect in decision-making. 

 

3. The specification of the minimal prerequisite inputs that need to be provided 

by the agent‟s operating environment in order to allow the affective agent to 

function properly. 

 

4. The construction of actual agent framework in programming code for use 

during empirical testing in the problem domain. 

 

The scope of the second objective the covers the evaluation of the affective 

decision-making algorithm used by the agent framework in the problem domain.  The 

problem domain which will be used as the primary test platform, for the execution of 

empirical experiments on agents using the affective agent framework, is „Scalable 

Game Environments‟.  For this research, scalable game environments are defined as 

computer games which possess the properties summarised here: 

 

1. Open game objects: The agent will have to adapt to new objects that enter the 

game with undefined behaviour. 

 

2. Non-symbolic interaction: The agent only selects actions as a result of the 

presence of the game object. The agent does not communicate with the user or 

with the game objects.   

 

3. Non-competitive performance comparison: There is no „winner‟ in the game, 

only a benchmark comparison of end-game performance between tested agent 

frameworks 

 

4. Incomplete information: The tree of all possible game states and game 

outcomes cannot be constructed apriori. 

 

5. Continuous: The dataset used for benchmarking agent framework performance 

is presented gradually in real-time. 
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These properties are further elaborated in Chapter 2: Literature Review and 

Chapter 5: Principal Experiments on Affective Decision Making.  

 

The scope of the third objective is to control the assessment of the specific role 

of affective decision making in games.  Currently available commercial computer 

games will not be used due to their complexity in design.  The complexity of current 

commercial games, whether in game rules, game play, or even programmatic 

integration of the affective agent‟s framework class in game‟s program code, will 

incur heightened difficulty for the purpose of assessing the affective decision-making 

algorithm‟s advantages and weaknesses.  Toy games, such as software versions of 

traditional board games will also not be used for assessing the affective agent 

framework as they lack the properties of scalable game environments defined here.  

Instead a new scalable game will be purposely constructed for the purpose of testing 

and benchmarking between the agent frameworks.  The specification of the scalable 

game built specifically for this research is provided in Chapter 5. 

 

Finally, this research will benchmark the affective decision-making algorithm 

only in comparison with the most common game AI algorithms that have been 

popularly used for the construction of agents in computer games.  The common game 

AI algorithms types that will be used for the purpose of benchmarking the affective 

decision-making algorithm are as follows: 

 

1. Finite state machines. 

 

2. Decision trees. 

 

3. Reinforcement learning. 

 

The justification for using these three agent frameworks for benchmarking and 

comparison is because they are the three most common types of agent frameworks 

that are used for creating NPCs for existing computer games, as listed in Table 1.1 

(Millington & Funge 2009; Yannakakis & Togelius. 2018). 
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1.8 CHAPTER OUTLINE 

 

This thesis is divided into seven chapters, which are outlined as follows: 

 

Chapter 1: Introduction 

 

This chapter provides an introduction on the use of artificial intelligence in 

games, and specifies the type of game, „open interactive games‟ that will serve as the 

problem domain.  Emotional and affective agents are introduced as a proposed 

solution which will allow for intelligent decision making in the problem domain.  The 

research question is posed here. The research objectives, scope, and methodology for 

proving answering the research questions are outlined.  A summary of the affective 

agent framework, and its core component, the affective decision making engine, is 

introduced. 

 

Chapter 2: Literature Review 

 

This chapter contains a broad survey of research literature on the role of 

emotional affect in problem solving.  Of particular focus is the Somatic Marker 

Hypothesis, the model of emotional affect adopted in this research as a guideline for 

the construction of an affective agent framework.  The specific contribution of 

emotion theory for the formulation of a decision-making algorithm that emulates 

emotional affect is outlined.  A comparison is made of the types of emotional and 

affective agents currently explored in the field of artificial intelligence, as a means for 

classifying the affective agent framework that will be developed of this research.  Past 

and existing similar work in affective computing that employs emotional affect 

models as AI in games is listed. The chapter concludes by highlighting the difference 

between this research and these other works. 
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Chapter 3: Research Methodology 

 

This chapter reiterates the research question as the primary motivation of the 

study.  It elaborates on all the major phases that have been taken during this research 

in order to provide a holistic coverage of the research question.  The exact component 

activities performed for each phase of research are described, along with methods 

used to undertake each stage of activity.  The associated results discovered for each 

activity, which has led to the final research direction, are presented. 

 

Chapter 4: An Affective Agent Framework For Scalable Game Environments 

 

This chapter describes the „Affective Decision Making Engine‟ (ADME) in 

detail as the core algorithm that emulates the roles of emotional affect during decision 

making, for use by software agents.  The logic and calculation of the two components 

of ADME, namely the Affect Matrix and the Affect Homeostat are provided in detail.  

The flow of information and details on data processing in ADME is demonstrated.  

Finally, the parameters used to fine-tune the intelligence of ADME are described. 

 

Chapter 5: Principal Experiments on Affective Decision Making 

 

This chapter specifies the necessary properties of the experiments that simulate 

the problem domain, i.e. open interactive environments.  The game developed for this 

research, called „Scalable Whack-A-Mole‟, is introduced and the parameters which 

control complexity in the game are provided and described.  Design of existing agent 

frameworks that will be used for benchmarking are also presented here.  The common 

datasets utilised for producing the level playing-field needed for benchmark testing of 

all agent frameworks in multi-stage experimentation are presented.  The purpose of 

each stage of testing is also presented and justified. 
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Chapter 6: Analysis of Results for Establishing The Ideal Operating 

Environment For The Affective Agent Framework 

 

This chapter shows the results of the multi-stage empirical experiments 

performed on the affective agent framework. The exact configuration of each stage of 

the multi stage experimentation is detailed.  The performance of each agent 

framework benchmarked in the multi-stage experiments are compared, and the 

differences in affective agent‟s performance are highlighted. The raw data discovered 

in this chapter is presented to understand the conditions in which emotional affect will 

be useful.  The chapter concludes by fulfilling the third research objective: i.e. 

establishing the ideal operating environment where affect will have greater utility 

during decision-making. 

 

Chapter 7: Conclusion 

 

This chapter repeats the research question, and highlights once again how the 

first, second and third research objectives have been fulfilled.  This is done by 

highlighting the primary research contribution, i.e. the affective agent framework, and 

the details of the operating environment where affective agents will be needed.  

Possible future directions for other researchers who follow this work are presented.  

The thesis concludes with an insight on the future of affective computing mechanisms 

in real-world applications. 

 

 

 



 

 

 

CHAPTER II 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

 This chapter begins by looking at the computer and video games industry and 

the current state of artificial intelligence in games, particularly in the development of 

believable and interactive virtual players for computer games, called 'Non-Player 

Characters' or NPCs.  The challenges faced in developing decision making A.I for 

NPCs are highlighted, especially in getting NPCs to adapt to scalable game 

environments.  

 

The core literature that provides the solution that is proposed by this research 

is explored next.  In order to create A.I for NPCs that can adapt to scalable game 

environments, this chapter looks at research on how humans and other living 

organisms use emotional affect to manage, or cope, in dynamic and unfamiliar 

situations that are similar to scalable game environments. The theories on emotions 

covered in this treatise focus will focus more on „affect‟: the feelings which motivate 

or bias decisions.  The lessons learned from this investigation allows us to model a 

framework for agents that emulate the benefits of affect when making decisions in 

these situations. 

 

Figure 2.1 summarizes the the most important topics that will be covered in 

this literature review.  The prevailing theories on the influence of emotions-on 

decision making will be outlined first.  Next, a coverage of existing applications of 

emotion theory in artificially intelligent software agents will be provided.  Finally, 

some of the issues that confront any application of emotion theory as a means for 
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rational decision-making will be discussed.  The shaded area in Figure 2.1 indicates 

the topics that are most relevant, and are directly used, in the proposal of an affective 

agent framework for decision-making in games. 

 

 

 

Figure 2.1 Literature Review Topics 

 

 The final part of this literature review will discuss the research gap by 

summarizing the functional requirements needed to emulate the affective decision 

making process in software agents.  Existing methods and technologies that can be 

used to fill this research gap by fulfilling each functional requirement are presented. 

 

2.2 THE COMPUTER AND VIDEO GAMES INDUSTRY 

 

The computer and video games, once thought of as electronic toys to distract 

children and teenagers, have become a global economic force by the sheer volume of 

revenue it creates.  A report by DFS Intelligence estimates sales of computer and 

video game hardware and software from January to June 2011 generated a gross 

revenue of USD $65 billion (RM 207.18 billion) globally (Baker 2011).  Based on 

current purchasing trends, Gartner Intelligence projects that this figure will increase to 
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USD $74 billion (RM 235.87 billion) globally by the end of 2011 (Bilton 2011; Ell 

2018).  The same report predicts that the momentum is expected to continue, with 

annual earnings estimates of USD $112 billion (RM 357 billion) globally for the year 

2015 (Gaudiosi 2011).  In terms of employment, the Entertainment Software 

Association, or ESA, states in 2011 that the computer and video games industry 

provides around 120,000 jobs for people in the U.S.A alone, with an average annual 

salary of USD $90,000 (RM286,875) per employee (Entertainment Software 

Association 2011).  The wealth generated by computer and video games justifies the 

development of methods for making games more engaging, as the appeal of computer 

games lies in the level of immersion they provide.  To that end, serious research in 

artificial intelligence is increasingly being integrated into computer games to make 

them more entertaining. Computer games are no longer just a distraction, but are now 

a platform for good science. 

 

This dissertation is about how to make computer games more entertaining: by 

giving „feelings‟ to the virtual players we play against, to make them more intelligent 

and challenging in the game.  The approach taken is not to give these virtual players 

expressive „emotions‟ like „happiness‟, „anger‟ or „sadness‟.  Instead, the aim is to 

provide them with a means to be affected by their environment, so that they may 

understand how to live in a world they have never seen. 

 

2.3 ARTIFICIAL INTELLIGENCE IN GAMES 

 

Computer and video games are software designed to provide entertainment 

through the simulation of events and automation of interactive game objects or 

players, thereby allowing people to experience roles far different from their daily 

lives.  Many computer games entertain players, i.e. people who interact with the game, 

by providing scenarios in which to perform various tasks, such as solving puzzles, 

performing a sequence of actions, or by reaching goals.  Players become entertained 

either by the completion of these set tasks, or by the challenges and obstacles 

presented by the game that prevents players from completing these tasks.  Players can 

also be immersed in the game the closer the game simulates reality, either from the 

visual realism displayed by the game graphics, or by behavioural realism exhibited by 
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the game objects.  Behavioural realism is provided through the inclusion of artificial 

intelligence algorithms, or AI, as part of the game objects control code.  The following 

is a non-exhaustive list of the game genres where AI is used: 

 

1. Shooters:  Includes SHMUPS (shoot-em-up games), FPS (first-person 

shooters), and other shooting type games.  AI is used here to simulate game 

opponent movement, targeting, and firing. 

 

2. Sports games: Team-based AI is used to coordinate computer player strategy 

and positioning as a multi-agent system.  AI is also used to calculate the 

trajectory of game objects, such as a football. 

 

3. Board games: Strategic AI is used here to search through game-state trees and 

find the optimum sequence of moves that maximizes game outcome. 

 

4. Role-playing games (RPG): The realism of RPG game environments, such as 

gravity and particle collision, is controlled by AI.  The game characters that 

can interact with the player, or challenge the player, are controlled by 

behavioural and decision-making AI.  Player interaction with game characters 

may also include conversations, scripted with chatterbot-type AI. 

 

5. Online games: Includes massively-multiplayer online role-playing games 

(MMORPG), which are extremely large scale versions of RPG games.  As 

with RPGs, online games employ AI for environmental control, behavioural 

control and interaction, but to a much larger degree.  Multiple human players 

simultaneously interact with game objects, therefore AI is also used as part of 

the game infrastructure, for load balancing and process optimization. 

 

2.3.1 Game AI research directions: Realism vs. Intelligence  

 

There are two general directions taken in the application of AI in computer 

games, which are: 
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1. Realism - This direction involves using AI inside game elements, both the 

game environment and game objects, to enhance the illusion of reality in the 

game as a whole, by mirroring actual observable real-world phenomena. 

 

2. Intelligence - This direction involves using AI inside game objects in 

particular, in order to control their actions and provide either the guise and 

semblance of cognition, or some mimicry of actual rational thought. 

 

For each direction stated previously, there are multiple specific roles that can 

be taken by AI in games.  Laird and van Lent (2001)(Petrović 2018) provides an 

partial list of game types, the AI roles in each type of game, AI problem domains in 

gaming, and the specific research areas in AI that is of commercial interest to 

computer game developers.  This list can be seen in Table 2.1.  

 

Table 2.1 Game genres and AI roles, problems and research 

 
Game Genres AI Entity Roles AI Research Problems AI Research Areas 

Action Tactical enemies Interact with environment High-level perception 

Role playing Partners Fast response Commonsense reasoning 

Adventure Support characters Realistic sensing Natural language 

Strategy games Story directors Adapt to environment Speech processing 

God games Strategic 

opponents 

Interact with humans Gesture processing 

Team sports Units Adapt to human player Planning & 

counterplanning 

Individual 

sports 

Commentators Difficulty 

adaptation 

Cognitive modeling 

   Strategic 

adaptation 

Plan recognition 

   Interact with other AIs Soft real-time response 

   Coordinate behavior Reactive behavior 

   Navigation Teamwork 

   Use tactics and strategies Scheduling 

   Allocate resources Path planning 

   Understand game flow Spatial reasoning 

   Humanlike responses Temporal reasoning 

   Reaction times Opponent modeling 

   Realistic 

movement 

Learning 

   Emotions Knowledge acquisition 

   Personalities   

   Low computational 

overhead 

  

   Low development overhead   

 
Source: Laird & van Lent 2001 
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Millington and Funge (2009)(Yannakakis & Togelius. 2018) further classifies 

the most common AI roles into five distinct models, which are Movement, Decision-

Making, Strategy, Infrastructure, and Agent AI.  Table 2.2 consolidates Laird and van 

Lent‟s  (2001)(Petrović 2018) list of AI research areas in games, against Millington 

and Funge‟s (2009)(Yannakakis & Togelius. 2018) classification of AI roles.  

 
Table 2.2 Common roles of AI in games and associated research 

 
Game AI Direction Game AI Roles AI Research Areas 

Realism Infrastructure Physics and particle control 

Perception control 

Collision detection 

AI programming languages 

Communication Dialog control 

Automated story direction 

Intelligence Movement Path finding 

Goal directed behaviour 

Strategy Tree search 

State evaluation 

Decision Making Behavioural state transition 

Adaptation 

Reinforcement learning 

Classification 

 
Sources: Laird & van Lent 2001; Millington & Funge 2009. 

 

The roles taken by AI in each research direction is elaborated here.  In the 

game realism research direction, the AI roles are typically as follows: 

 

1. Infrastructure – AI is used here to control environmental dynamics to 

provide the illusion of real-world reaction, which is done through various 

programmed techniques.  For example, physics and gravity in games can be 

simulated using physics subsystems or engines, such as Ageia and NVIDIA‟s 

„PhysX Engine‟ (PhysX System Software 2011) and Havok‟s „Havok Physics‟ 

engine (Havok Physics SDK 2011). In another example, game information 

provided to the player can be limited through perception control mechanisms 

that emulate line-of-sight (Terzopoulos et al. 1994; Elmalech et al. 2016).  

Collision detection algorithms have been integrated with rule-based algorithms 

to trigger environmental reaction to game events (Lin & Gottschalk 1998; Kim 

et al. 2018), for example: controlling crowd dispersal when a game car is about 

to crash into a game wall, and simultaneously sequences the necessary 



25 
 

animation during this interaction.  AI research is also used in the creation of 

specialized rule-based languages for AI control in games, such as RC++ 

(Wright, I. & Marshall. J. 2000).  

 

2. Communication – Refers to AI that is used to control dialog choices between 

game characters and the game story board.  Weizenbaum‟s (1976; Ferrara et 

al. 2016) ELIZA, a chatterbot programmed with pre-scripted responses 

mimicking a psychotherapist, was historically one of the earliest examples of 

AI simulating direct conversation with users.  Story directors, such as Young‟s 

(2001) MIMESIS architecture, instead use AI to plan the narrative of the 

game‟s story. 

 

In the game intelligence, the roles taken by AI are classified as follows: 

 

1. Movement – AI is used in this role for path finding and path planning.  

Classical AI search methods are most commonly used here.  A* search (Hart et 

al. 1968; Bast et al. 2016) is perhaps the most popular algorithm for path 

finding ever used in games.  Integration of movement plans and action plans 

requires more than just general search, and is achieved using goal-oriented 

planning tools such as the GOAP system (Orkin 2004). 

 

2. Strategy – Refers to AI that lays out a plan for a series or sequence of actions 

that is expected to reach highly preferable game outcomes.  Monte-Carlo tree 

search (Chaslot et al. 2008) has found its place as a strategy search mechanism 

for deterministic board games with massive search trees such as Go.  More 

complex AI such as Dynamic procedural tactics (Straatman et al. 2005) have 

been used in games such as Killzone (2004) to tactically pick positions. 

 

3. Decision-Making – AI for classification, adaptation and learning have been 

found to be of great use for this role in games.  Finite state machines (FSM), 

governed by pre-scripted rule bases, have been extremely popular due to its 

simplicity.  Games such as F.E.A.R. (Orkin 2006) use FSM due to the ease in 

which state transition mechanisms such as these can be used to alternate 
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between different sets of behaviours.  Other forms of FSM, such as Abstract 

State Machines (Schwab, 2008) integrate FSM with decision-tree mechanisms 

to allow for iterative search of best decisions.  Reinforcement learning 

mechanisms such as Q-learning (Watkins 1989; Zaremba et al. 2016) excel at 

adapting the correct action to the game input in real-time games without the 

need for training. TD-Learning (Sutton 1988; Hertz et al. 2018) is another 

adaptive learning mechanism that is able to adapt the ideal weights to position 

evaluation functions for use in real-time stochastic games such as 

Backgammon (Tesauro 1995; Sutton & Barto 2018). 

 

2.3.2 Agents: The embodiment of autonomous AI in games 

 

The AI game intelligence methods listed here are most commonly integrated 

as algorithmic components that control the actions and decisions of game objects in 

the form of software agents (van Lent et al. 1999; Gaudl 2016).  In computer games, 

agents are usually object-oriented program code classes that behave autonomously 

inside the game environment.  Passive agents, i.e. agents that do not display active 

movement selection, strategic planning, decision making, or any form of interactivity, 

generally become part of the game‟s smart-background.  Passive agents are largely 

equipped with algorithms that play the infrastructural role of AI in games.  Active 

agents, i.e. agents that do endeavour to make decisions, strategize, plan and interact, 

usually play some or all of the AI intelligence roles in games listed in Section 2.3.1, 

including the conversational role.   

 

The specific types of agent which human players can see as „people‟, 

„animals‟, or „opponents‟ in games, are called „Non-Player Characters‟ (NPC) 

(Dignum et al. 2009). NPC are intelligent agents that use AI for game character 

cognition.  In simple terms, NPC are computer controlled characters.  They display the 

four necessary characteristics of intelligent software agents (Wooldridge 2002), which 

are: 

 

1. Persistence: The agent is always in the program memory, waiting to execute 

behaviour under pre-programmed conditions. 
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2. Autonomy: The agent does not require direct program invocation or user input 

to execute behaviour, but instead self-determines when behaviour should be 

executed. 

 

3. Social ability: The agent can communicate and collaborate with program 

objects or even with other agents 

 

4. Reactivity: When the correct conditions are observed, the agent executes 

behaviour that it determines to be appropriate for that condition. 

 
Table 2.3 Most frequently used decision-making algorithms for A.I game agents. 

 
Type Examples General Technique Requirements Issues 

Finite 

State 

Machines 

(FSM) 

Algorithms 

 Moore machines 

(Moore 1956, 

Staddon 2016) 

 Mealy machines 

(Mealy 1955, 

Vaandrager 

2017) 

Evaluate the problem 

state condition before 

transitioning to a new 

behavioural state. 

 

 Fully observable 

states (i.e. 

complete 

information) 

 Determinism 

Knowledge rules need 

to be fully manually 

determined and 

customized for the 

game before agent can 

operate. 

 

 

Decision 

Tree 

Algorithms 

 ID3 (Quinlan 

1986, Wu et al. 

2016) 

 C4.5 (Quinlan 

1993, Witten et 

al. 2016) 

Simulate all possible 

move combinations 

up to n-ply and 

evaluate outcomes of 

leaf nodes. 

 

 

 Fully observable 

states (i.e. 

complete 

information) 

 Determinism 

Tree can branch 

exponentially if the 

possibilities that occur 

for each ply increases. 

Search 

Algorithms 

 A* (Hart et al. 

1968, Bast et al. 

2016) 

 Minimax (von 

Neumann 1928, 

Aumann 2017) 

Simulate path 

movement and 

propagate reward or 

error to paths that 

reach closer to goals. 

 

 Fully observable 

states (i.e. 

complete 

information) 

 Determinism 

Stagnation (e.g. going 

back and forth) may 

occur if changes along 

paths alternately 

propagate conflicting 

rewards. 

 

 

Adaptation 

Algorithms 

 Q-learning 

(Watkins 1989, 

Zaremba et al. 

2016) 

 TD Learning 

(Sutton 1988, 

Hertz et al. 

2018) 

Apply reward or 

penalties to action 

choices, according to 

the degree of goal 

fulfilment. 

 

 Fixed choices and 

elements (e.g. the 

same actions or 

objects are always 

available) 

Preference for heavily 

reinforced actions can 

be difficult to change 

in a short period. 

 

Artificially intelligent agent frameworks used for current computer games 

mostly assumes that the game environment is fully observable and deterministic.  The 

algorithms used are tailored to cater for every eventuality within the game 
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environment.  Table 2.3 summarizes the major types of decision-making algorithms 

used by game agents in current computer games. 

 

The most common decision-making algorithms used to control agent 

behaviour in commercial computer games today are as follows (Sweetser & Wiles 

2002): 

 

1. Finite state machines: Finite state machines (FSM), such as Moore machines 

(Moore 1956; Staddon 2016) and Mealy machines (Mealy 1955; Vaandrager 

2017) uses state transition methods to determine the agent‟s current state in a 

game.  Each state is manually associated to a particular output or action that 

can be taken by the agent.  The state transition diagrams or truth tables used to 

determine the state and appropriate action must be pre-optimized for the game, 

prior to game play, for FSM to work properly (Holzmann 1991; Cassel et al. 

2016). 

 

2. Decision trees:  Decision tree algorithms make use of the classification results 

from decision tree learning methods such as ID3 (Quinlan 1986; Wu et al. 

2016) or C4.5 (Quinlan 1993; Witten et al. 2016) to determine the current state 

of the game.  Similar to finite state machines, each classified state or node of 

the decision tree is mapped to the appropriate action.  For the same reason, the 

decision trees must be trained on and optimised for the game, prior to game 

play (Murthy 1998; Suthaharan 2016). 

 

3. Search: Search algorithms, such as minimax (von Neumann 1928; Aumann 

2017) or A-star (A*) search (Hart et al. 1968; Bast et al. 2016), projects all 

possible future states for each action, either until the game‟s conclusion (i.e. 

endgame) or up to a limited number of game rounds, or „ply‟.  The outcomes 

of all end nodes at the endgame or final-ply is compared, and the action 

mapped to the path leading to the most desirable outcome is chosen.  In order 

to assign the proper value to end nodes, search algorithms require that the 

game be fully observable and deterministic.  This is so that the sequence of 
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future actions can be planned and the outcome of each future action step can 

be predicted (Russell & Norvig 2015). 

 

4. Adaptation:  Adaptive algorithms use reinforcement learning methods, such 

as Q-learning (Watkins 1989; Zaremba et al. 2016) or temporal difference 

(TD) learning (Sutton 1988; Hertz et al. 2018), to compare the change in 

outcome received after trying different actions.  Actions with higher outcomes 

are rewarded (i.e. reinforced), and the action with the highest reward is chosen 

in subsequent iterations in the game (Tesauro 1995; Sutton & Barto 2018). 

Adaptive algorithms require the game to be deterministic.  The current actions 

reinforced through the algorithm must be available in future iterations for 

agent to benefit from adaptation (Yen & Hickey 2004). 

 

This research focuses on the role of AI for decision-making in games as the 

primary area of study.  Agents such as NPCs need not be complex and are usually not 

programmed with the full range of AI roles in order to play games.  Seemingly 

complex NPCs like the AI agents in the computer game „F.E.A.R.‟ only uses the 

simplest form of FSM, which has just three states for behavioural selection, and an A* 

algorithm for path finding (Orkin 2006).  Yet to the human user playing the game, the 

illusion of intelligence is near perfect, evident through the range of pre-scripted 

behaviour for performing long sequences of actions.  For the purpose of providing the 

user with interactive entertainment, simple algorithms such as these are sufficient 

(Butcher & Griesemer 2002).  Furthermore, specialized and hardcoded AI solutions to 

problem solving in games are easier to develop and require less time to modify due to 

their simplicity.  The lack of the need for NPCs to be scalable beyond the roles that 

they play in close-ended computer game negated the need for using more advanced AI 

techniques (Millington & Funge 2009; Yannakakis & Togelius. 2018). This 

algorithmic simplicity is why FSM and adaptive reinforcement learning algorithms, 

such as Q-learning, remains the preferred decision-making component in agent 

frameworks for NPC development in games. 

 

It has been established in this section that very simple AI algorithms are 

sufficient to provide a convincing illusion of intelligent behaviour for adding 
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entertainment value in games – with the caveat that the game does not increase in size 

or complexity.  Since the widespread acceptance of online games and online delivery 

of game content, however, there is an increasing trend to make games expandable 

beyond their original retail release format, in order to increase the commercial value 

of computer games (Toivonen & Sotamaa 2010).  For example, an MMORPG such as 

World of Warcraft (2004) has increased its game environment three times since its 

original release date, implemented through game expansion packs, with a fourth game 

expansion currently planned (Blizzard Entertainment 2011).  Even non-online games 

such as Fallout 3 (2008), has expanded five times through the distribution of 

downloadable content packs (DLC) that can be purchased from its in-game 

application distribution store.   

 

The growth of game environments is now the emerging trend.  The 

subscription model, where players pay to keep playing the same game, has proven to 

be a more lucrative business model for computer game developers, since the process 

of core game engine development only needs to occur once (Stenros & Sotamaa 

2009). Game developers have found that it is easier to make money from games that 

already have an established fan base.  To preserve subscriptions, new game content 

that works with the existing game engines must be built. 

 

2.4 SCALABLE GAME ENVIRONMENTS 

 

This research coins the term “Scalable Game Environments” , the problem 

domain for this research outlined in Chapter 1, to refer to the any type of game where 

the task environment or operational environment, in which players will play, can be 

expanded.  The term differs from “scalable game architecture” (Cai et al. 2002) which 

actually refers to the scalability, distribution, and balancing of game processing load 

throughout a game‟s server and network infrastructure (Glinka et al. 2007).  Instead, 

scalable game environments refer to the „playing field‟ or „arena‟ of the game itself 

which can grow in size, complexity, and population.  This growth is commonly a 

result of additions or modifications to the game program, implemented through 

software updates, software expansion packs, or downloadable content.  For example: 
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1. A software patch to a game may change the value of the attributes, or 

„features‟, of current NPC agents. 

 

2. A game expansion pack may introduce a new playing area and new classes of 

opponent NPC agents which have different features and abilities. 

 

3. A downloadable content pack may introduce a new puzzle and provide new 

rules for playing the puzzle. 

 

 
 

Figure 2.2 Scalable Game Environments and Scalable Game Architectures. 

 

Figure 2.2 highlights the difference between scalable game environments and 

scalable game architectures to avoid confusion between the two.  In Figure 2.2(a), 

whenever an existing game can be expanded by adding new playing areas, new game 

rules, or new game objects, then this refers to a “Scalable Game Environment”.  In 

Figure 2.2(b), when new servers or network nodes can be added to the existing 

infrastructure supporting the game, then this refers to “Scalable Game Architectures”.  

This research only focuses on scalable game environments, and uses a custom built 

„toy‟ game simulating a minimal scalable game environment to test the affective agent 

framework. . Figure 2.3 illustrates scalable game environments and how it differs 

from current static game environments. 
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(a) Static Game Environment 

 

 
 

(a) Static game environments have uniform 

rules and permanent object types for all 

areas in the game.  The agent can use a 

fixed algorithm, such as FSM, to 

manually program behaviour for every 

possible encounter with object that 

exists in the game.  This is currently the 

preferred method for creating 

artificially intelligent agent for games 

(Millington & Funge 2009). 

(b) Scalable Game Environment 

 

 
 

(b)  Scalable game environments have different rules and objects 

for different areas.  Furthermore the environment is scalable, in 

that new game expansions can add new areas with new rules, 

update existing rules and replace objects.  Manual 

programming of behaviour to cater for unknown future areas 

and rules is infeasible. 

 
Figure 2.3 Static game environments vs. Scalable game environments. 

 

 

Scalable game environments shares some characteristics of real-world 

environments that make online or real-time classification and search of optimal 

actions difficult.  The general characteristics that are shared are as follows: 

 

1. The environment is partially observable – There is a limit to the objects can 

be perceived by agents operating in a real-world environment.  This limit is 

either imposed by the agent‟s own perceptual range, or is obscured by 

obstacles, or simply because the object has not come in to view in the 

environment.  In the same way, scalable game environments are naturally 

partially observable because it is impossible to know beforehand what objects 

will exist for a game extension that has not been created.  These limits mean 

that, although it is conceivable to train an agent to classify optimal actions (i.e. 

output) for all current inputs, retraining for reclassification is necessary for all 

new input observed in the future, which is intractable.   Adaptation is the only 

feasible method for online learning in this case. 
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2. Outcomes of interactions are stochastic – In a real-world environment, the 

rules governing cause and effect can only be conclusively known through deep 

inspection of the physical laws controlling the interaction.  In the same way, 

the outcomes of interactions in scalable game environments are also stochastic, 

because the rules governing game interactions are not known to agents 

operating in the environment.  As a result, decision-making algorithms for 

game NPC agents, which have been optimally configured for a set of rules in 

one game environment, will not behave optimal in another game environment 

because the rules may be different. The agent will have to determine what 

rules are currently enforced before it is able to make intelligible decisions. 

 

2.4.1 Complexity from Uncertainty in Scalable Game Environments 

 

In intelligent agent research, Russell and Norvig (2015) have identified that 

uncertainty will occur when the agent‟s environment is as follows: 

 

1. Partially observable: The agent either has limited perception or cannot 

feasibly observe all changes in the state of its environment.  Uncertainty in this 

case is a result of the failure of the agent to account for all input/output 

changes, resulting in missing information required for analytical modelling. 

 

2. Stochastic:  The agent‟s environment is non-deterministic, i.e. the agent does 

not have full control over the outcomes of its actions.  For instance, the final 

outcome may depend not only on how the environment reacts to the agent‟s 

action, but also on the actions of a second agent within the same environment.  

The existence of multiple factors, in this case separate and non-linear 

evaluation functions, brings about uncertainty when determining outcomes.   

 

Therefore, in terms of intelligent agent operation, the problem domain for this 

research covers any agent interaction in an environment that is both partially 

observable and stochastic.  The purpose of this research is now to reduce agent 

decision-making problems due to uncertainty within such environments.  One type of 
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environment, which has been chosen as the experimental scope of this research, is 

computer games. 

 

This research finds that computer games are a useful experimental platform to 

simulate the effects of uncertainty to the agent, when the agent‟s operating 

environment is both partially observable and stochastic.  First and foremost, computer 

games are a platform where the exact evaluation function used to determine outcomes 

can be known conclusively.  The evaluation function is known by the game designer, 

yet at the same time is unknown to the agent.  For this reason, any knowledge model 

produced by the agent can be validated for accuracy by comparing it against an 

outcome graph produced by the actual evaluation function.  Secondly, uncertainty can 

be simulated by controlling the amount of information that can be observed by the 

agent, and the degree in which agent interactions are deterministic or stochastic.  This 

is accomplished by periodically expanding the game environment to either include 

new game areas, or to include new game objects.  This is the reason why research 

coins the term “Scalable Game Environments” to refer to such games 

 

This research argues that each of the common decision-making algorithms 

used in current computer games, as listed in Table 2.3, would suffer the effects of 

uncertainty if the game environment were scalable.  The effects of uncertainty are 

described for each type of algorithm: 

 

a. Finite state machines and decision trees require that the game environment be 

deterministic and fully observable, so optimal state-transition diagrams or 

decision trees can be constructed to suit the game.  The argument here is that if 

new game areas or objects were introduced in the game, the decisions made 

using these state-transition diagrams or decision trees would no longer be 

optimal as it is not optimized for the new input.  The effect of uncertainty 

caused by the new input would be the introduction of a new state and a new set 

of non-weighted state-transition paths.  This new set of state-transition paths 

may potentially outweigh all existing learned state-transitions, effectively 

causing to become the preferred state-transition path over all others.  If new 
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states continuously come into the finite state machine, it would cease to be 

finite, and may never properly weigh any new state-transition path. 

 

b. Search techniques also require the game environment to be deterministic, so 

that a complete path for reaching the best expected outcomes can be projected.  

Yet, if the game were to constantly scale and expand to include new areas and 

objects, such search paths will need to be recomputed.  This may cause the 

path taken to be less optimal in the long run.  The effect of uncertainty to 

search algorithms therefore would be to cause the algorithm to explore and test 

all possible new paths.  If new paths continuously become available, then the 

search algorithm would never stop exploring. 

 

c. Adaptive techniques can be expected to work well in scalable game 

environments.  It can operate in partially observable and stochastic 

environments, since it can reinforce decisions against any available action or 

object it encounters.  However, because the reinforcement is made against past 

actions or objects, it can be argued that the efficiency of adaptive techniques 

will degrade when the game changes if it constantly discards past actions or 

objects, or replaces them with new ones.  This will force adaptive mechanisms 

to readapt to the changes.  The effect of uncertainty to adaptive techniques is 

that as new objects become available, it will spend more time iteratively 

reinforcing the new objects or actions, rather than exploiting its knowledge of 

past action choices.  Furthermore, if new objects or actions are continuously 

introduced in the game, the adaptive algorithm may not experience the new 

object long enough to iterative reinforcement to adequately occur. 

 

It should be pointed out that the computer game development community does 

not see these shortcomings as a problem (Butcher & Griesemer 2002; Straatman et al. 

2005; Orkin 2006).  This is because the focus of commercial game development is 

entertainment, rather than optimal efficiency of agent operation (Miikkulainen et al. 

2006).  The current solution, preferred by almost all game developers, is to simply 

create different agent A.I. algorithms for each different eventuality or environmental 

change that may be encountered when the game expands (Millington & Funge 2009; 
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Yannakakis & Togelius. 2018).   For this reason, computer games are only used as an 

experimental platform, to test new agent frameworks in this research.   

 

2.4.2 Complexity in Scaling Game AI 

 

To cater for the growth in computer game environments, programming 

elements such as the game AI needs to be scalable beyond their initial design. Herein 

lies the inherent flaw with the initial preference for using simple AI algorithms in 

agent frameworks for generating NPCs.  FSM, for example is a type of specialized AI, 

in that the state transition nodes of agents using FSM are tailored specifically for the 

immediate game environment.  The same is true for NPCs developed using rule-based 

agent frameworks.  Figure 2.4 provides a minimal scenario where an agent using FSM 

would fall back to a default action, when the rules for the specific encounter with 

game objects are absent. 

 

 
Figure 2.4 FSM-based agent responses to game environment encounters. 

 

In Figure 2.4, the agent can find the correct action to take with the FSM, when 

the object being encountered (“Opp” for „Opponent‟) has the necessary properties, or 

features types („Opp.strength‟ and „Opp.toxin‟) for transition between the many agent 

states in the FSM.  In this case, the rules for subsequent actions are provided to the 
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agent.  The rules are hardcoded to cover every eventuality in a deterministic game 

environment.  However, after a software expansion, the game is no longer 

deterministic, but is now stochastic.  New actions („Run‟ and „Hide‟) may become 

available to the agent, which are not represented in the agent‟s current FSM.  

Furthermore, the object faced in the game may possess features that are not 

represented as transitions in the FSM either. This means that after the software 

expansion, the agent will only remain aware of its old actions and the old features that 

it needs to look out for.  If these features are not available, the agent would instead fall 

back to a default action, when the FSM is not provided with the input it needs. 

 

Since the agent framework that the NPC is based on cannot learn new rules 

without the game programmer‟s intervention, new states and state-transition rules will 

have to be added to the FSM (Millington & Funge 2009; Yannakakis & Togelius. 

2018).   For every new area of the expanded game environment, the game developer 

has to take either of the following approaches when programming NPC agents: 

 

1. Develop new NPCs with new state-transition nodes or rules for the new game 

environment 

 

2. Modify existing NPC by integrating new state-transition nodes or rules to 

existing nodes and rules, to allow it to work in new game areas. 

 

The former approach is the easier of the two, since it would not alter the tried 

and tested behaviour of the NPCs in old areas.  The illusion of continuity of the NPC, 

in different areas of the game, is preserved by regenerating the NPC object container 

into a new agent framework (Sweetser & Wiles 2002).  In other words, replacing the 

AI code, while retaining the old NPC „face‟ for each new area would give the illusion 

of a continuous yet behaviourally complex agent. Figure 2.5 demonstrates how the 

agent framework for the same NPC can be changed in different game areas. 
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Figure 2.5 An NPC travelling from one game area to another is reinitialized using a new agent 

framework, while preserving the NPC‟s properties. 

 

The NPCs alteration from using one agent framework to another is necessary 

in a commercial game, due the differences inherent within the agent‟s operational 

environment in each area.  Russell and Norvig (2015) provides a list of six 

environmental properties that can differ between game environments: 

 

1. Fully observable vs. partially observable: Either some or all game objects 

can be perceived by NPCs. 

 

2. Deterministic vs. stochastic: Future NPC state can either be completely 

controlled by NPC, or is subject to an element of chance. 

 

3. Episodic vs. sequential: NPCs decisions either have a momentary or 

persistent impact on future outcomes. 

 

4. Static vs. dynamic: The game environment may change independently of 

NPC actions. 

 

5. Discrete vs. continuous: The game environment may change due to the 

passage of time 

 

6. Single vs. multi-agent: Other agents may exist in the game to interact with 

NPC or to alter the game environment. 
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Due to the differences listed above, game developers find it easier use different 

agent frameworks for different areas of the game, rather than program the NPC based 

on a single agent framework for all game areas.  On the other hand, this creates a 

problem in that for every new game expansion released, the process for creating new 

agent frameworks will have to be repeated, thereby adding significant development 

cost to the game. 

 

For the moment, adaptive machine learning methods, such as reinforcement 

learning, are employed to allow scalability of NPC agent behaviour in games.  

Dynamic scripting (Spronck 2006) bridges rule-based AI with reinforcement learning 

mechanisms, by using a weight update function to determine what the best rule-base 

to use for a particular game environment is.  Stop-gap measures adaptive methods 

such as these are however still tied closely to particular game environments and 

require extensive pre-scripting of the potential rule-bases.  A different adaptive 

machine learning method, call Q-learning, takes a more general approach (Watkins 

1989; Zaremba et al. 2016).  For any game, the Q-learning algorithm will initially 

explore all possible actions to find the action that provides the best delayed reward for 

the provided game stimuli.  This action will be recalled whenever the same game 

input stimulus is experienced.   

 

2.4.3 General Game Playing (GGP) for Scalable AI Agents 

 

Since 2005 that has been a movement to create AI agents that can be used to 

play any game, without the need to tailor or optimize the underlying agent framework 

to the game being played.  The challenge presented was to build a framework for AI 

agents that can play many different, undisclosed games, using only a single agent 

framework.  These types of agent are called General Game Players (GGP) 

(Genesereth & Love 2005; Perez-Liebana et al. 2016).  General game players are 

designed to play games that they have never played, by only being provided the rules 

of the game, minimally abstracted using the Game Description Language (GDL) 

(Love et al. 2008), which includes an abstraction of the current game state and a list of 

actions that the agent can take.  The GGP agents are able to use this abstract 
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description and determine the next move to take.  This determination is done after 

having processed the GDL description using first-order logic, fuzzy logic, and 

theorem proving to find potential best actions.  Machine learning methods such as 

reinforcement learning have also been implemented as GGP agents (Banerjee & Stone 

2007).  Fluxplayer (Schiffel & Thielscher 2007) for example, won the 2006 GGP 

Competition, organized by the Association for the Advancement of Artificial 

Intelligence (AAAI), after having played through 70 different matches of different 

games.  Fluxplayer‟s success is due to the automated generation of heuristic functions 

for games defined in GDL. 

 

This class of agents, i.e. agents that exhibit human-level AI and flexibility, is 

exactly what is needed in order to have game AI agent framework that can scale 

automatically to match any expansion of the game environment (Laird & van Lent 

2001; Petrović 2018).  Unfortunately, at this time, current GGP is mainly suited to 

play board-type games.  This limitation is due to the necessity of abstracting the game 

rules and complete game states to GDL prior to playing the game.  The dynamic, 

sequential, and continuous properties of modern computer games are often 

prohibitively difficult to properly abstract in GDL, although efforts to make the 

language more flexible have been made (Thielscher 2010).   

 

2.4.4 What is needed: AI Agent Frameworks That Can Operate in Scalable 

Game Environments 

 

In order to allow agents to operate in game environments that scale (i.e. 

expand beyond its initial parameters) without having to recode the game AI to cater 

for the new environment, the agent framework used to generate NPCs must allow the 

NPC to be able to scale up in intelligence as well.  Similar to GGP agents, the NPC 

agent must learn to play the game by itself, after having been provided with minimal 

information such as the game state.  However, unlike the fully-observable 

deterministic board games played by GGP agents, the game rules may not be 

provided.  This research declares that scalable game environments naturally exhibit 

the following game properties: 
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1. Partially observable: The complete range of game objects cannot possibly be 

known because game developers are free to implement any game object class 

for future game expansions. 

 

2. Stochastic: The rules governing game outcomes cannot possibly be known 

because game developers are free to tailor new game rules for future game 

expansions. 

 

Since new game areas may bring with it new rules, which are not known to 

existing game NPCs, the agent framework must be able to supply the NPC with 

insight on how to react within these new game areas, or how to behave in encounters 

with new game objects.  In order to test the effectiveness of decisions made by such 

scalable AI agent frameworks, and in order to control the analysis of the agent‟s 

performance in a scalable game environment, this research has developed a toy game 

that simulates a minimal scalable game environment as its problem domain.  Chapter 

5 describes this problem domain test platform in greater detail. The types of changes 

and expansions that will occur in this miniature scalable game environment are: 

 

1. New game objects will be introduced randomly in the game. 

 

2. The new game objects may or may not possess new attributes or features 

types. 

 

3. New game rules, unknown to the agent, will govern the evaluation of game 

encounter outcomes with new game objects. 

 

2.5 INSIGHT TO A SOLUTION: INTERNALIZING VALUES 

 

The roots of this research began with the examination of curious problem sets 

in Game Theory, where irrational sub-optimal behaviours lead to superior outcomes 

compared to rational utility driven behaviours.  In Game Theory, any interaction 

involving decisions made between two or more entities (e.g. people, objects, and 

nature) can be reduced to an economic problem that can be expressed as a single or a 
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series of two dimensional utility matrices (Straffin 1996; Colman 2016).  One such 

problem discovered by Flood and Dresher (1952)(Embrey et al. 2017), which invoked 

curiosity towards non-rational behaviour, was the Prisoner‟s Dilemma. 

 

A summary of the Prisoner‟s Dilemma problem is as follows as described by 

Axelrod (1984)( Leary & Baumeister 2017): Two prisoners are interrogated separately 

by the prison warden regarding a committed crime.  Each prisoner is given the 

opportunity to accuse the other prisoner (i.e. in Game Theory terms called „Defect‟ or 

DEF) or feign ignorance (i.e. in Game Theory terms called „Cooperate‟ or COOP). A 

prisoner that accuses gets a reward from the prison warden, while a prisoner that is 

accused gets a penalty from the prison warden.  However, if both prisoners accuse 

each other, then both prisoners gain nothing for confusing the prison warden.  As a 

twist, if both prisoners feign ignorance, then both prisoners are given a small reward 

by the other prisoner for keeping silent.  Neither prisoner knows what the other 

prisoner will do.  This interaction is expressed in a two dimensional matrix shown in 

Figure 2.6 (a). 

 
 (a) 

  Prisoner 2 

  COOP DEF 

P
ri

so
n

er
 1

 

COOP 

 3  5 

3  -2  

DEF 

 -2  0 

5  0 
 

  

(b) 
  Prisoner 2 

  COOP DEF 

P
ri

so
n

er
 1

 

COOP 

 3  5 

3  -2  

DEF 

 -2  0 

5  0 
 

  

(c) 
  Prisoner 2 

  COOP DEF 

P
ri

so
n

er
 1

 

COOP 

 3  5 

3  -2  

DEF 

 -2  0 

5  0 
 

  
(a) The Prisoner‟s Dilemma game 

matrix.  Each prisoner chooses either 

COOP or DEF, which will realize an 

outcome represented by the cell 

intersections. For each cell intersection, 

the lower left number is the outcome 

realized by Prisoner 1, while the upper 

right number is the outcome realized by 

Prisoner 2. 

(b) The shaded cells show Pareto-

optimal outcomes, i.e. preferred 

outcomes that are not exceeded 

completely by any other outcome.  

The arrows show which action has 

higher utility under any eventuality.  

The vertical arrows show Prisoner 1‟s 

dominant action choice (in bold), and 

the horizontal arrows show Prisoner 

2‟s dominant action choice (in bold). 

(c) Both prisoners choose their 

dominant actions (DEF) but end up 

realizing outcome (0, 0) which is not 

Pareto-optimal.  This is because there 

exists an equilibrium outcome that 

will always be realized if both 

prisoners rigidly follow a single 

measure of rational utility. 

  
Figure 2.6 The Prisoner‟s Dilemma Game-Theory Matrix 

 

Source: Axelrod 1984 

 

The dilemma arises because both prisoners have an optimally dominant action, 

„Defect‟, that will lead to an inferior equilibrium outcome, where both prisoners get 

„0‟ reward (Figure 2.6 (c)).  Furthermore, the superior Pareto-optimal outcome (i.e. 

mutually beneficial outcome), where both prisoners get „3‟ rewards (Figure 2.6 (b)), 
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can never be realized because the action leading to the reward is sub-optimally non-

dominant (Poundstone 1992; Zeng et al. 2016).  

 

Under uncertainty, if both prisoners assume that the other prisoner will always 

decide on behaviour purely through rational utility, then only the inferior equilibrium 

outcome will ever be realized.  Rapoport and Chammah (1965)(Sandoval et al. 2016) 

conclude that this is the inescapable consequence of the pursuit for optimal decision-

making through a singular measurement of utility.  Consider, however, what would 

occur if both prisoners can do either of the following: 

 

a. Associate some degree of attachment (e.g. affection, fear) to the other prisoner, 

or 

 

b. Be privy to alternate measurements of utility, for instance, which considers 

subsequent consequences a decision against the other prisoner. 

 

In the two situations above, both prisoners would now be in a position to 

realize the superior Pareto-optimal outcome.  Gerald Edelman (1987)(Barrett 2017), in 

his theory of neuronal group selection, states that the measure of utility can be 

adjusted by internalized value systems (Edelman 1987; Barrett 2017).  The most 

recognizable internal value system uniform to most living organisms is the use of 

emotions (LeDoux 1996; Hart 2018). 

 

The Prisoner‟s Dilemma teaches us that blind regard to singular evaluation 

functions under uncertainty can potentially lead to poor sub-optimal decisions.  Real-

life parallels of the Prisoner‟s Dilemma, where real prisoners are made to tell on their 

fellow prisoners, reveal that fear of future consequences override any promise of 

personal benefit (Poundstone 1992; Zeng et al. 2016).  Even though the fear cannot be 

quantified in the same utility terms provided by monetary rewards, its existence is 

enough to cause the prisoner to consider alternate measures of value, for example, the 

prisoner‟s own survival. The same can be seen in a software competition, called the 

Iterated Prisoner‟s Dilemma (IPD), a version of the game that is played repeatedly by 

two artificially intelligent agents.  Competition results of the IPD has proven that 
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agents that adhere to rigid evaluation functions perform weakly compared to agents 

that endeavour to identify with, or profile, opposing agents (Voth and Alfonsi 2005).   

 

The Prisoner‟s Dilemma is not used as the problem domain to be solved by 

this research.  However, it motivates this research by showing the following: 

 

1. The criticality of properly determining which measures of value (i.e. 

evaluation function) to use under uncertainty or in situations of incomplete 

information, prior to making a choice of the course of action to take by the 

chosen evaluation function.  

 

2. The attractiveness of internalizing a uniform unit of value when the problem 

presents multiple irreconcilable measures of utility for each choice (e.g. 

monetary value versus the value of survival). 

 

By integrating the two lessons above in the design of a decision making agent, 

action choices which are previously seen to be irrational and sub-optimal from a 

strictly external value perspective can now be seen as being rational and optimal under 

an internal value perspective.  The realization that emotions and affect similarly alter a 

living organism‟s value perspective warrants further investigation for its use in agent 

decision-making.   This „emotional affect‟ would enable the execution of non-

dominant actions for the pursuit of superior outcomes. This insight provides the 

motivation for the creation of an affective agent framework for decision-making.  

 

2.6 DISCOVERING WHAT IS NEEDED: THEORIES ON HOW 

EMOTIONS AFFECT BEHAVIOUR DURING PROBLEM-SOLVING 

 

In order to find a model for developing a behavioural affect mechanism 

required to solve the intended problem domain, this research looks toward the natural 

world for initial insights on how organisms (humans, animals, insects and others) 

manage incomplete information and uncertainty when making decisions. As a 

reminder to the reader, this research aims to develop a mechanism that achieves 

successful behavioural affect for a game playing NPC agent, which will allow the 
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agent to cope with new objects and game rules that the agent has not been designed 

for.  As previously specified, the problem domain for this research is scalable game 

environments, where the outcome of the game is made uncertain by the unknown rules 

that dictate outcomes of interactions in new game areas.  Because of these undisclosed 

rules, the inherent patterns that would guide agents to conclusively predict expected 

outcome is obscured.  Finally, the game is made dynamic and constantly changing due 

to the introduction of new and never-before encountered objects that react to these 

hidden rules in different ways.  Some of the desired abilities of the behavioural affect 

mechanism needed for this problem domain are as follows: 

 

1. To be able to compensate for the lack of complete information, by selectively 

utilizing other source of information to rationalize. 

 

2. To be able to adapt to the changing conditions of the game. 

 

3. To be able to prepare for future anticipated conditions through facts learnt 

about the opponent(s) within the game. 

 

4. To be able to approximate the most appropriate learnt information when an 

unfamiliar state of the game is encountered. 

 

One area of cognitive science that sheds some light into how organisms decide 

intelligently under limited or incomplete information is in studies on emotion.  Oatley 

(1987)(Reeck et al. 2016) highlighted the need to consider emotions as being an 

integral tool for managing uncertainty after analysis on how mammals are able to cope 

with and solve cognitive design problems successfully, despite being deliberately 

given insufficient cues for solving these problems.  De Sousa (1987)(Morag  2016) 

theorised that emotions provided this capability by “supplying the insufficiency of 

reason”, allowing the organism to make inferences and proceed with making choices.  

LeDoux (1996)(Hart 2018) agrees along similar lines when he posited that organisms 

depend on emotions as a mechanism for self-preservation by cutting down on time for 

deliberation, or to compensate for insufficient information.  Perhaps the best summary 

for the function of emotions, as it relates to decision-making under uncertainty, is 
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presented by Fellous (2005)(Moser et al. 2016): that emotion communicates 

information in a simplified yet high-impact package to the organism in multiple levels 

(physically, hormonally, and mentally). 

 

The question this research asks is this: if emotions were to be a model for 

achieving advantageous behavioural affect under uncertainty in problem solving, what 

exactly is it about emotions that provide these functions?   

 

The most prevalent opinion on what emotions are, and also the most 

recognizable opinion to the man on the street, is that emotions are distinct mental 

states that describe the current disposition of the organism.  This opinion is the 

mainstay of the „palette theory‟ of emotions; so-called due to its premise that there are 

a limited number of basic emotions (or palette emotions) through which all other 

emotions are derived.  These basic emotions are recognizable in that it has a non-

complex linguistic representation in emotional words (also called emotional tokens) 

such as „fear‟, „happiness‟, „love‟, „disgust‟ and many others.  The idea behind palette 

emotions is that behaviour is controlled through the transition and flow between one 

emotional state to another.  Researchers such as Scherer (1984)(Frijda 2016), Ekman 

(1994)(Coppin & Sander 2016), and Fellous (1999)(Wang et al. 2016) subscribe to the 

existence of palette emotions and have modelled cognitive structures for appraisal 

using palette theory to explain how coping works.   

 

Unfortunately, a palette theory of emotions is unsuitable for the purposes of 

this research for the following reasons: 

 

1. It fails to describe how cognitive structures based on a limited number of basic 

emotional states can supplement incomplete information and eventually lead to 

successful behavioural affect. 

 

2. The premise that there are a few basic emotions is arguable as this is a 

linguistic constraint: some languages have a larger set of emotional 

representations than others. 
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3. Most importantly, the disposition implied by particular emotional tokens have 

no place or function in discorporate software agents dealing specifically with 

problem solving.  There is no need for a software agent playing chess to feel 

„love‟, for example.  Likewise, if this chess-playing agent were designed to 

feel „anger‟, does this mean that the moment anger is elicited the agent must 

suspend its rational processes and chance a poorly reasoned move? 

 

For the reasons stated above, palette theory provides little in the way of insight 

into how emotion could be used to develop a behavioural affect mechanism for 

handling uncertainty.  Even so, this did not prevent attempts to create such 

mechanisms in other research (El-Nasr et al. 2000; Gmytrasiewicz & Lisetti 2000; 

Vallverdú et al. 2016).  The palette theory of emotions is mentioned in this section to 

acknowledge that this is what most people outside the field of cognitive science would 

immediately recognize as emotions.  This research‟s decision to not employ palette 

theory is one of the reasons why the results of this research would be „affective agent‟ 

framework rather than an actual „emotional agent‟.  This distinction must be made 

because it is the purpose of this research to emulate the benefits of emotions in 

problem solving.  It is not the purpose of this research to develop an agent that is 

recognisably emotional. 

 

There are emotion theories that do not depend of the existence of palette 

emotions or the use of linguistic emotional tokens to explain how emotions can be 

beneficial to problem solving: 

 

1. The cognitive structure of emotions provided by the OCC model (Ortony et al. 

1988; Frijda 2017) describes how emotions are able to point out what is 

important in a particular problem situation. 

 

2. The Somatic Marker Hypothesis (Damasio 1994; Lopez-Franco et al. 2018) 

reveals how the disposition an organism feels as emotions are really alterations 

of what are the important facts in a problem.  The hypothesis also states that 

these dispositions are recalled later in the future, either as a response to a 

similar contextual stimulus or in anticipation of such stimulus. 



48 
 

 

The subsequent sections of this chapter will describe these emotion theories in 

more detail and also show how they are currently applied in existing artificial 

intelligence research. 

 

2.6.1 Elements From The Cognitive Structure Of Emotions That Contribute 

Towards Behavioural Affect 

 

Some designers of artificial intelligent systems that utilize emotions as a model 

for the decision-making process (Gratch 2000; Bazzan & Bordini 2001; Davidsson et 

al. 2017; Kowalczuk & Czubenko 2016) chose to define these processes around the 

OCC model of emotions.  The OCC model of emotions is a cognitive structure of 

emotions produced by psychologists Andrew Ortony, Gerald L Clore, and Allan 

Collins (1998)(Frijda 2017) as a system for predicting the emotions that are 

experienced by a person, and for understanding the eliciting conditions responsible for 

invoking the experienced emotional state.  The OCC model defines emotions as 

„valenced‟ responses, which are defined as positive or negative responses directed 

towards three perceivable situational elements:  events, agents, and objects.  The 

polarity and intensity of these valenced responses serve to highlight aspects of the 

situation that are of personal significance to the perceiver.  The medium for conveying 

this highlighted information is through distinctive physiological feelings and 

cognitions.  In other words, the function of emotions under the OCC model is to 

provide information on what is important in the present situation.  

 

The OCC model of emotions is of particular interest to this research due to its 

attempts to divorce the linguistic connotations of emotional tokens from the 

understanding of spirit of emotional function in decision-making
1
.  The authors of the 

OCC model themselves reject the vagaries of palette emotions theory as being 

insufficient to define the relationship between emotions and behavioural affect.  To 

achieve this, the cognitive structure of emotions presented by the OCC model groups 

                                                           
1
 It must be noted however that throughout their treatise, the authors still find it necessary to employ 

these emotional tokens to explain their model. This is done out of necessity to communicate within a 

relatable framework, and does not connote tacit support for palette emotions. 
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physiological states by the eliciting conditions that they share.  These physiological 

states define emotions through the positive or negative affect they incur on the 

perceiver.  Finally, intensity variables measure the degree of affect experienced by the 

perceiver
2
. 

 

• Eliciting Condition - Each eliciting condition centres around one of the three 

perceivable situational elements: 

 

1) Consequences of events 

 

2) Actions of agents 

 

3) Properties of objects 

 

This grouping of eliciting conditions is further refined through particular 

bindings related to each perceivable element.  An example of further bindings for 

events is whether consequences of a particular event affects the perceiver (an internal 

binding) or someone else (an external binding).   

 

• Valence - The key element for defining an emotion and the emotion‟s 

behavioural affect is the valence of the physiological states within each group.  

For example, „like‟ and „dislike‟ are respectively positive and negative 

valenced physiological states of an emotional group centred on objects.   

 

• Intensity Variable - The magnitude of affect an emotion has is determined by 

intensity variables such as desirability (for events), praiseworthiness (for 

agents), and appeal (for objects).  For example, the magnitude to which an 

event facilitates the realization of a particular consequence is defined by its 

„desirability‟, whereas „undesirability‟ expresses the magnitude in which the 

event hinders the realization of the consequence. 

 

                                                           
2
 The term „perceiver‟ is used in this section only to distinguish the agent perceiving these elements 

from the perceived „agent‟ element in the OCC model that is the subject of the valenced reaction. 
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Figure 2.7 exhibits the cognitive structure of emotions as presented in the 

original OCC model.  The OCC model of emotions groups valenced emotions 

(opposite terms in parentheses) according to their eliciting conditions (squares) and 

intensity variables (bold).  By defining emotions as physiological states that occupy 

each emotional group, any number of distinguishable physiological states can be 

recognized as an emotion without needing a corresponding emotional token to 

represent it linguistically.  More importantly, this cognitive structure of emotions 

provided by the OCC model provides a quantifiable means for examining how 

emotions motivate behavioural affect. 

 

Figure 2.7 The OCC model of emotions. 

 

(Source: Ortony, A., Clore, G., L., and Collins, A (1988)., “The Cognitive Structure of Emotions”, 

Cambridge University Press, p. 69) 
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In the OCC model, emotional states can be abstracted as a value of the 

intensity variable for a particular valenced emotional state at a particular time. This 

abstraction specifies the importance of a perceivable situational element to the 

perceiver in terms of a specific emotional state.  An example of this abstraction is as 

follows: 

 

• DESIRE (p, e, t) = the measure of how much a person, p, desires a particular 

event, e, to occur at time, t. 

 

Abstractions of emotional state are intended to provide a basis for behavioural 

affect, through the maintenance of emotional state values within some acceptable 

range. Ortony, Clore, and Collins (1988)(Frijda 2017) posit the use of thresholds for 

each emotional state abstraction in order to define when behavioural affect should 

occur. Going over or under this threshold would either: 

 

a. Trigger the adjustment of other emotional state values according to the 

relationship between emotional states in the OCC model, or 

 

b. Trigger a behavioural response from the perceiver in order to mitigate the 

increase or decrease of emotional value and restore emotional value to within 

acceptable ranges. 

 

An example of the former, as provided by Ortony, Clore, and Collins 

(1988)(Frijda 2017) themselves, and repeated here for illustrative purposes only, is 

shown below: 

 

IF JOY-POTENTIAL(p, e, t) > JOY-THRESHOLD(p, t) THEN  

set JOY-INTENSITY(p, e, t) = JOY-POTENTIAL (p, e, t) – JOY-

THRESHOLD(p, t) 

ELSE  

set JOY-INTENSITY(p, e, t) = 0 
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An extended set of similar IF-THEN rules can potentially be used to establish 

relations between each and every emotional state within the cognitive model more 

vividly.  Such extensions have led to the construction of some types of emotional 

agents, which use the dynamic interplay of values change within the emotional states 

to motivate behavioural affect (Bazzan & Bordini 2001; Davidsson et al. 2017).  

Behavioural affect mechanisms, or simply coping mechanisms (Gratch 2000; 

Kowalczuk & Czubenko 2016), for maintaining emotional values have also been a 

product of the abstraction of emotional states within the OCC model
3
.   

 

It is important to note that the development of coping mechanisms using the 

OCC model goes beyond the authors‟ intended purpose of defining a cognitive 

structure of emotions in the first place (Ortony et al. 1988; Frijda 2017).  To repeat, 

the intended purpose of the OCC model is to predict the emotions that are experienced 

by a person, and for understanding the eliciting conditions responsible for invoking 

the experienced emotional state.  The main contribution of the OCC model specific to 

this research is the revelation that emotions are not dispositions invoked in ether.  

Rather, emotions are measurable valenced reactions elicited toward perceivable 

situational elements (events, agents, objects).  As mentioned in the beginning of this 

section, these emotional reactions are elicited for the purpose of providing information 

on what is important in the present situation.  This revelation suggests an important 

lesson relevant to this research: that the flexibility exhibited by living organisms in 

managing problems under uncertainty with emotions is the result of a process of 

identifying what is important in the problem through valenced assessments. 

 

2.6.2 Elements From The Somatic Marker Hypothesis That Contribute 

Towards Behavioural Affect 

 

Research in neuroscience provides some additional insight into how emotions 

contribute towards flexible behavioural affect under uncertainty during problem 

solving.  Antonio Damasio (1994)(Lopez-Franco et al. 2018) presented a 

comprehensive neurological analysis that supports the criticality of emotions during 

                                                           
3
 The example systems mentioned here do not exclusively use the OCC model in their design, as they 

often include concepts from palette theory and other emotional theories.  However, the reliance on the 

OCC model in these designs are prominent. 
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decision-making and problem solving in his Somatic Marker Hypothesis.  Similar to 

the OCC model of emotions, the Somatic Marker Hypothesis avoids reference to 

linguistic emotional tokens and palette emotions.  Instead, a systemic view of 

emotions rooted on the physiological and mental state of the perceiver is taken.  The 

hypothesis asserts that the brain produces „marker‟ signals, which are representative of 

the body state, born as a result of the bio-regulatory processes triggered in response to 

experienced stimulus.  The somatic markers would later covertly re-emerge from the 

brain‟s representation of the soma (i.e. Latin for „body‟) in anticipation of the stimuli, 

and manifests itself in the decision-making process by forming selection biases 

(Damasio 1996; Kanbara & Fukunaga 2016).  Damasio recognizes these body state 

representations, or “somatic markers”, to be synonymous to what organisms 

experience as emotions, which suggests to this research two additional contributions 

emotions make towards decision-making: 

 

1. That emotions are learnt body states invoked upon experience or anticipation 

of similar contextual stimuli, and  

 

2. This invocation of emotion results in the recollection of decisional bias from 

past body states, thereby leading towards behavioural affect for present 

decisions. 

 

The Somatic Marker Hypothesis was conceived by Damasio as a result of 

examination of patients with brain lesions within the prefrontal cortex, specifically the 

ventromedial sector.  This area of the brain is recognized to be a repository for 

associations between the situational context (i.e. facts that make up the context of a 

particular situation) and the disposition to recall an emotion as a result of that context 

form the amygdala, the emotional centre of the brain (Damasio 1996; Bechara et al. 

2000; John et al. 2016; Kanbara & Fukunaga 2016).  Patients with damage to this area 

preserve normal levels of learning, intelligence, and perception, but fail to experience 

or express emotion within complex or social situations.  As a result of this failure, 

these patients are commonly observed to have lost the capacity for making 

advantageous decisions.  This observation led Damasio to hypothesize the function of 
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emotions as a „body-loop‟ that alters the person‟s physical and mental state in 

preparation for the pertinent facts of the situation.  

 

Control patients with none of the associated brain damage positively show 

physiological changes, in the form of skin conductance responses, as a result of 

emotional invocation, but the target patients do not.  The lack of somatic change is 

followed by a lack of insight regarding the situational context, which explains the 

patients‟ inability to make proper action choices in tests under uncertainty.  This led to 

the conclusion that emotions are responsible for the recollection of pertinent facts 

regarding a particular context, and that these recalled facts are instrumental for 

making advantageous decisions within the context (Damasio 1994; Lopez-Franco et 

al. 2018). 

 

The theory formulated to describe this observation of emotional affect is called 

the „As-if body-loop‟.  When a person experiences new stimuli for the first time, the 

physiological change experienced by the body generates a valenced (i.e. positive or 

negative) emotional response of attraction or repulsion in reference to the resulting 

body state.  This is illustrated in Figure 2.8(a) and is generally known as a normal 

„body-loop‟ (Bechara 2004; Nelson et al. 2016).  Upon continuous observation of the 

environment, the same emotional response, known as „affect‟, is propagated by the 

ventromedial pre-frontal cortex to the amygdala, and other associated areas of the 

brain.  This occurs in anticipation of the same stimuli recurring, but most crucially, 

without the stimuli actually happening.  This influence of emotional affect creates a 

gut-feeling that either urges the person to realize the stimuli once again, or repulses 

the person enough to prevent the stimuli from being realized.  This spontaneous and 

continuous influence of affect is called the „As-if body-loop‟.  An illustration of the 

„As-if body-loop‟ is shown in Figure 2.8(b).  The entire operation of the „As-if body-

loop‟ describes, from a neurological perspective, what we recognize to be the 

influence of emotional affect on decision-making. 
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Figure 2.8 The „Body-loop‟ and „As-if body-loop‟ 

 

Source: Bechara, A. & Damasio, A. R. 2005. The somatic marker hypothesis: A neural theory of 

economic decision. Games and Economic Behavior. 52: 336–372. 

 

Apart from revelation that one of the functions of emotions is to recall facts for 

making advantageous decisions in problem, this research is further interested in the 

Somatic Marker Hypothesis due to the manner in which the hypothesis reveals how 

emotions redefine problems. A series of experiments, called the Gambling Test, were 

performed by Antoine Bechara et al. (1994)(Hiser & Koenigs 2018) to prove the 

Somatic Marker Hypothesis. These tests provide clues to the process in which 

emotions establish the pertinent facts for problem solving.  The purpose of the 

Gambling Test was to see whether target patients, with impairments in the 

ventromedial prefrontal cortex but with intact cognitive capabilities, would be 

sensitive to the future consequences of their actions when handling situations of 

uncertainty.  During the test, each patient was required to make a profit from a loan by 

selecting cards from different decks.  Some decks had uniformly high rewards but 

disproportionately higher hidden penalties; other decks had low rewards but negligible 

penalties.  The hidden penalties occur frequently in some decks, and less so in others.  

While all patients were observed to initially prefer the higher rewarding decks, the 

control patients tended to veer away from these decks after learning of the high 
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penalties they suffered as a consequence.  Observations from the tests showed that 

target patients constantly failed to anticipate the magnitude of unknown future 

penalties, which resulted from their continual favouring of the apparent high rewards 

that reinforced their decisions.  It was later surmised that the lack of emotional 

capacity caused by the target patients‟ impairments resulted in less sensitivity to 

prospects of success or failure (Damasio 1994; Lopez-Franco et al. 2018).   

 

The results of the Gambling Test suggest that the use of these hypothetical 

somatic markers signalled the appropriate reaction in response to the prospect of 

outcomes.  Specifically, somatic markers reinforced the emotions associated to 

outcomes, and subsequently motivates behavioural affect.  What was of greater 

interest to this research regarding emotional problem-solving however, was that the 

collective association of somatic markers to the outcomes of all decks was able to 

cause a redefinition of the problem which then suggested the form of desirable 

outcomes.  The task assigned to the patients at the start of the test was to increase 

profit, but as the test progressed, the patients‟ emphasis shifted more towards avoiding 

catastrophic loss in their card selections without any instructions from the tester.  

Since the new task did not obstruct the accomplishment of the original task, this 

realization justified the control patients‟ selection of decks with lower payoffs. 

 

The first important lesson that can be taken from the Somatic Marker 

Hypothesis for this research is that it reveals an additional function of emotion that 

provides behavioural affect advantages to organisms when dealing with uncertainty in 

problems.  Specifically, the Somatic Marker Hypothesis shows that emotions are used 

to recall the pertinent facts of the problem to be solved in order to make an 

advantageous choice.  The second lesson important to this research is the Somatic 

Marker Hypothesis reveals the manner in which emotional problem-solving works 

when there is uncertainty in the problem.  The gambling tests have shown that 

emotions are important for periodically redefining what are the important and 

noteworthy facts that need to be paid attention to as the problem changes, so that 

advantageous choices can be continually made.  These two additional items about 

emotions are used in this research for the creation of a behavioural affect mechanism 
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that can handle uncertainty introduced by interactive complexity when solving 

problems. 

 

2.7 CURRENT APPLICATION OF EMOTION THEORY FOR 

ACHIEVING BEHAVIOURAL AFFECT DURING PROBLEM 

SOLVING 

 

Both the OCC model of emotions and the Somatic Marker Hypothesis have 

been used for the creation of intelligent agents, be it agents for problem-solving, 

communication and expression, or simulation.  These agents are loosely categorised as 

either „emotional agents‟ or „affective agents‟, i.e. agents that are motivated by the 

impact of experiencing emotions.  Wehrle (1998)(Soleimani  & Kobti 2016), provides 

a more functional categorisation of emotional agents, separating them into either 

scientific emotional agents, engineering emotional agents, or HCI emotional agents.  It 

must be noted that regardless of what the final agent will be called or categorised as, 

almost all types of emotional agents make use of some mixture OCC model of 

emotions, the Somatic Marker Hypothesis, and even palette emotions as suggested by 

Scherer (1984)(Frijda 2016) and Ekman (1994)(Coppin & Sander 2016) and rarely are 

their designs motivated exclusively by a singular emotional model.  Four distinct areas 

of agent research which directly employ emotion theory are: 

 

1. Emotional elicitation mechanisms 

 

2. Appraisal and coping mechanisms 

 

3. Emotional state transition mechanisms 

 

4. Homeostatic mechanisms 

 

It is important to acknowledge these different ways in which emotional theory 

has been used to create existing agents in order to understand the reasons for this 

research‟s hesitance in calling the final agent design an emotional agent, even though 
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strict adherence of the lessons of emotional theory to problem-solving has been 

maintained. 

 

Cognitive models of emotions, such as the one provided by the OCC model, 

has been the basis for the emotional elicitation mechanisms.  In particular, the 

cognitive model provides some structure for the flow between emotional states to 

govern behavioural affect or emotional expression.   The Oz project by Reilly 

(1996)(Smith 2017) and Bates (1994)(Kaptein et al. 2016) employs the OCC model in 

the design of their „Em‟ emotional model, which governs the behaviour of agents in 

their simulated world.  An artful use of emotional elicitation is the assessment of the 

emotional message within hand-drawn images (Sengers et al. 2002).  As a more direct 

adoption of the OCC model, Bazzan and Bordini (2001)(Davidsson et al. 2017) use 

similar abstractions of emotional state previously shown in Section 2.5.1 for the 

creation of extensive IF-THEN production rules to achieve behavioural affect.  A 

shared characteristic of agents that use cognitive structures of emotions for the 

purpose of emotional elicitation is that specific agent behaviours are attached to each 

valenced pair of emotions within the cognitive structure.  The compound values of 

each valenced pair at any moment determine the type of behaviour, or emotional 

expression, to be exhibited by the agent.  The cognitive structure itself provides the 

connections or hierarchy for the emotions to be elicited. 

 

Systems that simulate appraisal and coping, such as those created by Gratch 

and Marsella (2001)(McDuff & Czerwinski 2018), employ the concept of emotions as 

dispositions as used in the Somatic Marker Hypothesis combined with the concept of 

emotions as a reaction to perceivable situational contexts in the OCC model in order 

to simulate emotional cause and effect.  In appraisal and coping mechanisms, 

particular events within the simulation cause a shift in the valence of opposing 

emotional states, thereby changing the emotional disposition of the simulated 

character towards the player.   This effectively expands or limits the range of 

interaction choices that can be made between the player and simulated agent.  Such 

applications of emotional theory are useful for the purpose of training players to cope 

in emotionally charged situations and teach them how to bring the situation down to a 

more emotionally manageable level.  EMA, the appraisal and coping simulation 
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created by Gratch and Marsella (2001)(McDuff & Czerwinski 2018), for instance, is 

used to train U.S. Army soldiers what effect their interaction choices may have in a 

simulated battlefield. 

 

Emotional state transition mechanisms follow a similar vein to emotional 

elicitation mechanisms, in that it uses the cognitive structure of emotions to cause 

behavioural affect or exhibit emotional states.  The main difference that emotional 

state transition mechanisms have is that behavioural affect is the result of the 

movement between one emotional state to another.  In this sense, emotional state 

transition mechanisms recognize the importance of palette emotional states for 

providing the hierarchy of emotional affect.  Gmytrasiewicz and Lisetti (2002)(Adam 

et al. 2016) directly employs an emotional state transition mechanism in order to 

control the decision-making bias of agents that play the spatial version of the Iterated 

Prisoner‟s Dilemma effectively.  FLAME, a fuzzy logic adaptive model of emotions 

created by El-Nasr et. al. (2000) uses emotional state transition mechanisms to govern 

how emotions are expressed, to be ultimately used as a computational model of 

emotions within different user-interactive programs and software interfaces. 

 

The concepts of valence, intensity variables, and somatic recall of emotions 

are used to create homeostatic mechanisms for balancing emotional states.  In 

homeostatic mechanisms, valenced weights are attached to a set of emotional states, 

whereby particular sets of weight ranges exhibit a desirable state for the agent to be in 

(Gadanho 1999; Kirandziska & Ackovska 2017).  Actions performed by the agent, 

and also the current status of the agent, alters the weights in each emotional state in 

different ways.  Homeostatic imbalance occurs when the weights of particular 

emotional states exceed acceptable thresholds.  As a result, the agent would modify 

behaviour in order to restore the homeostasis of its emotions.  Homeostatic 

mechanisms have been successfully demonstrated to affect the behaviour of robots in 

obstacle avoidance tests by Gadanho and Hallam (2001)( Moerland et al. 2018) and in 

similar robotic control research (Maçãs et al. 2001b; Morgado & Gaspar 2005).   

 

Although these four areas of agent research employ the emotion theories 

afforded by both the OCC model and the Somatic Marker Hypothesis, one departure 
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from the spirit of these theories is the extensive use of linguistic emotional tokens to 

represent agent or decisional state.  The reader is reminded that both the OCC model 

and the Somatic Marker Hypothesis is presented as language neutral alternatives of 

emotions in order to understand how the emotional process benefits decision-making 

directly (see Section 2.6.1 and 2.6.2).  Therefore the use of linguistic emotional tokens 

is epiphenomenal
4
 to demonstrating how behavioural effect under uncertainty is 

successfully achieved with emotions.  Even so, the usage of these emotional tokens 

under mechanisms inspired by the OCC model of emotions, the Somatic Marker 

Hypothesis, and palette emotions does have merit in that it legitimises the use of the 

label „emotional agent‟ for these systems. 

 

2.8 OVERVIEW OF AFFECTIVE COMPUTING  

 

Affective computing is a relatively new branch of computer science, 

spearheaded by Rosalind Picard (1995)(McStay 2018), that studies how emotions can 

be emulated or mimicked in software, particularly in artificial intelligence (AI) 

systems.  This emulation of emotions is done either in order to enhance human-

computer interaction (HCI) or to improve the decision-making processes of software 

agents (Picard 1997, Fairclough 2017).  Current research in emotional agents 

encompasses many different areas, such as the understanding of the nature and 

implications of emotion, the development of artefacts based on emotional agent theory 

for task completion, and use of emotions in human-computer interaction (Wehrle 

1998; Soleimani  & Kobti 2016).  However, we can generally categorize emotional 

agent research into two distinct areas, which are: 

 

1. Emotional characters, and  

 

2. Emotional problem-solvers 

 

  

                                                           
4
 „Epiphenomena‟ used in the context of this research refers to implementations of emotional artefacts 

that only have a cosmetic effect for qualifying the use of the label „emotional‟ or „affective‟ in 

describing agent behaviour or agent algorithms.  Epiphenomena can be considered „window-dressing‟ 

that has no real bearing on the process or outcomes of decision-making.  This means that generic non-

emotional tokens can take the place of epiphenomena, and still display the same result.   
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2.8.1 Emotional Characters 

 

Emotional characters are intelligent agents that emulate emotions through 

computational mechanisms to produce behaviour and perform actions that match the 

agent‟s current emotional state.  Emotions are used in these types of agents as a means 

for expression which will aid in the development of believable artificial personalities 

that can be embedded in AI characters, robots, and human-computer interface 

systems.  One of the earliest and most cited projects in emotional agents of this type is 

the Oz project (Reilly & Bates 1992; Bates et al. 1992; Broekens et al. 2016; Hudlicka 

2016).  The Oz project involved the development of an extensive virtual world 

populated by artificial life (ALife) characters that use emotional computation 

mechanisms in multi-agent interaction.  The purpose of the project was to observe 

how emotions evolve the characters‟ behaviour so that the users playing in the Oz 

world would have a rich and realistic interactive experience (Reilly 1996; Smith 

2017).  Another commonly cited project is the Émile project (Gratch 2000; Gratch & 

Marsella 2004; Kowalczuk & Czubenko 2016; Alfonso et. al. 2017).  The Émile 

project focused on the development of synthetic human characters for the use in the 

U.S Army‟s civilian interaction training programs, so that real soldiers can practice 

making strategic decisions involving civilian life during emergencies before actually 

going into the field. 

 

In recent years, this type of affective computing research has also been 

extremely valuable in the computer and electronic entertainment industry.  Numerous 

popular toys, robots, and computer games can attribute their multi-million dollar 

success to the application of emotional character principles.  Some well known 

examples are like the Tamagotchi (1997) bird egg toy, the Aibo (1999) pet robot dog, 

and The Sims (2000) life simulation computer game. 

 

2.8.2 Emotional Problem-Solvers 

 

Emotional problem-solvers are intelligent agents that use emotional 

computation mechanisms for more practical tasks such as motivation, exploration, 

discovery, learning, and decision-making.  In this type of agent, emotions are used as 
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the agent‟s core AI algorithm that governs not only the agent‟s operation but also the 

rationalization of action responses to its percepts.  One commonly cited research 

explores the use of emotional computation mechanisms to improve the autonomous 

behaviour of a learning agent (Gadanho 1999; Gadanho & Hallam 2001; Gadanho 

2003; Ghayoumi & Bansal 2016; Kirandziska & Ackovska 2017; Moerland et al. 

2018).  These researchers explored the use of emotions to influence the agent‟s 

perceptions, provide reinforcement value from objects in the agent‟s environment, and 

in deciding whether to re-evaluate a previously made decision. A different approach 

taken in emotional problem solving research explored how emotion can affect 

behaviour in multi-agent interactions (Bazzan et al. 1997; Bazzan & Bordini 2001; 

Anantsuksomsri & Tontisirin 2016; Davidsson et al. 2017).  By analyzing the 

performance of emotional agents in the spatial version of the Iterative Prisoner‟s 

Dilemma (IPD) game (Axelrod 1984; Leary & Baumeister 2017), the researchers 

observed that the use of emotion was able to affect cooperative behaviour among 

other agent types, thereby guaranteeing the success of emotional agents in such 

games. 

 

Despite its potential in providing new insights in the more practical uses of 

emotion in artificial intelligence, research in emotional problem-solvers have been 

slower to develop than that of emotional characters.  One of the reasons is that 

industrial demand for emotional characters far outweigh that of emotional problem-

solvers (Bates 1994; Kaptein et al. 2016).  Another reason, which is elaborated in 

detail in Section 2.7 is the problem faced in validating the utility of decisions made 

through emotional affect in models that rely on characterized sets of emotions.  

Nevertheless, the rarity of research work in the area of emotional problem-solvers 

means that there is ample opportunity for new research to contribute to more practical 

applications of emotional agents. 

 

2.8.3 Types of Agents in Affective Computing Research 

 

To avoid confusion, this research distinguishes artificially intelligent software 

agents that embody affective computing methods and mechanisms into two distinct 

types of agents: 
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1. Emotional Agents - Agents that are involved with the detection and 

expression of emotions to enrich HCI are generally referred to as emotional 

agents. 

 

2. Affective Agents - Agents that imitate „affect‟, i.e. the emotional processes 

and influence which motivate or bias behavioural change, are aptly called 

affective agents.   

 

This research does not delve into expressive emotional agents, nor does it 

attempt to integrate characterised sets of emotions into any solution for the problem 

domain.  Rather this research will focus on emulating emotional affect in affective 

agents.  Research in affective agents focuses on the development of algorithms and 

heuristics that provide the same flexibility in software agent behaviour, as that which 

is afforded by intuition, instinct, or „gut feelings‟ in living organisms.  This is done for 

the purpose of improving affective agent performance in decision-making or problem 

solving.  Affective agents are distinct from emotional agents in that affective agents 

do not communicate emotion through emotional expression (Wehrle 1998; Soleimani  

& Kobti 2016). 

 

2.8.4 Using Affective Agents to Play in Scalable Game Environments 

 

One of the roles of emotions during decision-making, as postulated by 

philosopher de Sousa (de Sousa 1997; Morag  2016), is to supply the insufficiency of 

reason.  Specifically, in situations where a pre-trained rational judgement may fail, 

either due to complete unfamiliarity with the problem, or as a result of being 

encumbered by the mass of features to be processed apriori, the emotional state 

becomes the basis for identifying or summarizing what is important, so that rational 

judgement may commence.  This phenomenon of affect is of particular interests, as it 

describes a mechanism that is exactly needed in order make intelligible decisions in 

the problem domain explored for this research, i.e. scalable game environments. 
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Some evidence of this phenomenon, i.e. demonstrating of the usefulness of 

emotional affect for making (paradoxically) rational decisions, have been provided by 

(Bechara et al. 1994; Hiser & Koenigs 2018).  An experiment now known as the Iowa 

Gambling Test is a card-flipping game developed to analyze the impact on rational 

behaviour in patients that have physical damage to the „emotion‟ areas of the brain.  

The experiment fulfils the „partial information‟ and „stochastic‟ property of scalable 

game environments.  The experiment discovered that emotional affect contributes 

towards the association of feature values to predicted game outcome, and towards a 

re-evaluation of important goals through affect.  Bechara et al. (1994) describes the 

Iowa Gambling Test in detail.  The results of the Iowa Gambling Test appear to 

suggest that emotional affect can tell a person how to play a game well, when game 

has never been played by the person.  In different terms, the test suggests that 

emotional affect may be useful when playing partially observable stochastic games, 

when the game rules are poorly described.   In relation to the problem domain for this 

research, the test suggests that a mechanism emulating emotional affect may allow a 

game AI agent to cope with new game objects and unknown game rules that the agent 

may have to face with in scalable game environments. 

 

2.8.5 Current Affective Decision Making Research in Games 

 

To avoid dismissals on the reliability of decisions by emotional agents, which 

by design are expected to make justifiably „correct‟ decisions, there have been some 

research that explicitly depart from the use epiphenomenal emotional language tokens 

in their design. Since these mechanisms do not have anything that can be pointed out 

as being expressively emotional, i.e. communicating the emotional state, they are 

called „affective‟ mechanisms instead.  The aim of affective decision-making 

mechanisms is to try to emulate the specific functions of emotions when making 

decisions.  The approach taken to achieve the required functionality can be a mixture 

of rational, statistical, adaptive, and even emotional methods.  This section looks at 

some affective methods that endeavour to retain the justifiability of their actions, 

particularly when making decisions in computer games. 
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1. Weighted emotional appraisal and behavioural association – This method 

of affective decision making uses emotional states as affective placeholders for 

the elicitation of pre-programmed behaviours upon the activation of the 

emotional state.  The methods usually begin by determining which emotional 

state the agent is in, a process which is called „appraisal‟.  The activated 

emotional state will dictate which behaviour the agent is to use.  Figure 2.9 

shows the general framework of game-playing agents that used this method: 

 

 

 

Figure 2.9 General architecture of weighted emotional appraisal and behavioural association 

methods of affective decision-making. 

 

The following are some existing affective agent frameworks that use some 

form of weighted emotional elicitation for playing games: 

 

- Burghouts et al. (2003) provided an algorithm for game character agents in a 

game called Gridworld.  Each agent is equipped with an Emotion Process 

Module, which is centred on a few primitive emotional states.  For every event 

faced by the game characters, whether they are encounters with other game 

agents or the occurrence of game environment changes, the Emotion Process 

Module appraises the event using three parameters: Potency, Impact, and 

Intensity.  The event appraisal specifies which emotions are elicited, and the 

corresponding behavioural associated with the elicited emotion is executed. 
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- A similar method of emotional appraisal is also done by Baillie-de Byl (2003) 

in her EMAI (Emotionally Motivated Artificial Intelligence) architecture.  The 

EMAI architecture is used to elicit sets of behaviours of a virtual pet dog, 

where each set of behaviour is distinctly characteristic of a particular 

emotional state.  15 emotional states are used: ranging from „happiness‟ to 

„guilt‟.  A distinct behaviour set is associated with each state.  The EMAI 

architecture works by appraising events in the game environment using a 

weighted sum of six orthogonal appraisal dimensions (i.e.  „pleasantness‟, 

„anticipated effort‟, „certainty‟, „attentional activity‟, „responsibility‟ and 

„control‟) in relation to each emotional state.  This determines which emotion 

is elicited, and hence, which behaviour set is used by the virtual dog. 

 

- The method of affect appraisal across various emotional parameters as shown 

in EMAI is also used by Johansson and Acqua (2009) in the Emotional 

Behaviour Network, or EmoBN.  EmoBN is a affect-activated behavioural 

state transition mechanism.  It uses 4 elicitation parameters to determine the 

strength and influence of each emotional state.  The change in the emotional 

states subsequently causes the parameters of behaviour networks attached to 

each emotion state. 

 

2. Drive-model emotional appraisal – This class of affective decision-making 

methods takes a different approach by not appraising the agent‟s emotional 

states directly.  Instead, intermediate states that serves as the agent‟s 

motivations or „drives‟ are first used to appraise the agent‟s overall 

performance.  For game-playing agent, the various game-related attributes of 

the agent in the game, such as „health‟, „damage‟ and „gold‟ are used as the 

intermediate state.  For general software agents, however, each of the agent‟s 

goals acts as the intermediate state.  Depending on the state of the attributes or 

goals, different emotional states will be elicited.  For example, if the goals of 

an agent have not been successfully reached past a set threshold, the agent 

would transit to a specific emotional state.  As with the weighted emotional 

appraisal, each emotion is associated with a particular behavioural set.  Figure 
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2.10 shows the general framework of game-playing agents that used this 

method. 

 

 

 

Figure 2.10 General architecture of drive-model emotional appraisal and behavioural association 

methods of affective decision-making. 

 

The following are some existing affective agent frameworks that are appraise 

emotional states using the drive-model: 

 

- In CLIPS (Chaplin & El Rhalibi 2004), a rule-base system is used to evaluate 

the agent‟s performance in the game.  The rules are tailored specifically for the 

game environment.  The rule-base act as the emotional drive model that 

governs emotional state transition in a finite-state machine (FSM) decision 

structure.  This method has been used to control agent behaviour in game-

theoric situations such as the Iterated Prisoner‟s Dilemma (IPD).  Depending 

on the emotional state elicited as a result of the rule-base, the agent would be 

motivated adopt a strategy that it feels will benefit it in the long run with any 

opponent it faces in the IPD game. 

 

- A combination of the weighted and drive-model emotional appraisal methods 

has been used by Lim et al. (2010).  An NPC agent playing an educational 

role-playing game called ORIENT (Overcoming Refugee Integration with 
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Empathic Novel Technology) is equipped with a cognitive appraisal-based 

method called the FAtiMA architecture.  The FAtiMA architecture used 

continuous planning to actively appraise 22 emotion types.  The NPC agent is 

also equipped with a drive-model for goal appraisal called the PSI model.  The 

PSI model sets thresholds to the various goals of the agent.  The appraised 

emotions in FAtiMA alter the levels of the goal-status in the PSI model.  When 

the goal-levels exceed particular thresholds, various behaviour sets are elicited.  

Distinct behaviour sets are used for different permutations of the goal-levels. 

 

3. Other methods - Apart from the weighted emotion appraisal method and the 

drive-model emotion appraisal approach, other methods of affective decision-

making in games have been used.  Among them are adaptive learning, logical, 

and statistical methods.  The following affective-decision making methods are 

some of the alternate approaches currently available: 

 

- Shihab (2009) has produced an agent framework called the Emotional 

Decision Making Model that utilizes adaptive learning for emotional appraisal.  

In the Emotional Decision Making Model, Q-learning (Watkins 1989; 

Zaremba et al. 2016) is used to assess the agent‟s current performance in a 

game.  The reinforced „Q‟ values would control the transition of the agent‟s 

emotion states, specifically a „normal‟ state and „anxiety‟.  This method has 

been used to control agent navigation in a game which involves multi-agent 

communication (Shihab & Chalabi 2009). 

 

- First-order logical evaluation and fuzzy-logical evaluation have methods have 

also been used in affective decision-making methods.  Sardo (2011) has 

created a BDI (Belief-Desire-Intention) agent framework that utilizes the OCC 

model of emotions (Ortony et al. 1988; Frijda 2017) for playing the „Trust 

Game‟, another game-theoric type game.  The probability of success or failure 

of the agent is evaluated to alter the values of emotional „triggers‟.  When the 

triggers are activated, first-order logical evaluation of triggered emotions 

would activate subsequent emotional states.  The state that the agent ends up in 

after the logical evaluation dictates the behaviour set that will be used. 
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These methods represent only a sample of the available affective decision-

making methods currently being developed today.  Although the approaches used are 

different, they all share a commonality in that „emotional states‟ are still present as the 

basis for behaviour selection.  However, the emotional states, state-transitions, and 

associated behaviour set for each state still has to be hardcoded by the agent designer, 

in order to tailor it to the immediate game environment being played.  For this reason, 

the reliance on emotional states and state transitions, much like FSM, would be of 

limited use to this research in particular, since it will not be suitable for scalable game 

environments.   

 

Even so, a lesson from these methods that is of immediate use to this research 

is that the both the „antecedents‟ for affective decision-making (i.e. appraisal) and 

„consequents‟ for affective decision making (i.e. behavioural elicitation) can be devoid 

of emotional labels, while still delivering the benefits of emotional phenomenon.  This 

revelation allows this research to develop a mechanism that mirrors the physiological 

functions of emotional affect, such as the Somatic Marker Hypothesis (Damasio 1994; 

Lopez-Franco et al. 2018), without needing to refer to epiphenomenal emotional 

labels to qualify calling the results of this research and „affective agent‟. 

 

2.8.6 The Problem with Existing Affective Agent Frameworks 

 

The main problem with the weighted emotional appraisal agent framework and 

the drive-model emotional appraisal agent frameworks is that both these methods still 

rely on the use of emotional tokens as intermediary states for making the decisions.  

Table 2.4 compares these existing agent types to the agent framework that will be 

built by this research: the Affective Decision Making Engine. 
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Table 2.4 Comparison of existing affective agent frameworks. 

 

 Weighted emotional 

appraisal framework 

Drive-model 

emotional appraisal 

framework 

Affective Decision 

Making Engine 

(ADME) framework 

Uses emotional tokens 

 

Yes Yes No 

Is based on an arbitrary 

measure of utility 

 

Yes No No 

Requires pre-

conversion of external 

feature values to 

internal state values 

 

Yes Yes No 

Can handle untrained 

features 

No No Yes 

 

Both existing agent frameworks rely on the use of epiphenomenal emotional 

'words' as a tike placeholder representing states.  Each of these emotional tokens are 

encoded manually by their designers to make the agent react a particular way upon 

reaching a particular emotional state.  This behaviour is unnecessary for a software 

agent that is more concerned about game performance.  The value of each of these 

emotional tokens must also be pre-defined by the agent designer in order to allow the 

conversion of external utility values to internal state values.  Because of this 

limitation, the existing agent frameworks are still constrained to static game 

environments in order to function properly, as they will not be able to adapt if they are 

placed in a scalable game environment.  The ADME agent framework that will be 

built by this research will not suffer this limitation because it will rely on its own 

performance measures as a basis for emotional affect and decision making. 

 

2.8.7 Homeostats and Affective Homeostasis 

 

One particular device that emulates some of the somatic (i.e. body) functions 

of emotions is a homeostat.  A homeostat is an ultrastable self-organizing system, 

which was first introduced by cybernetician W. Ross Ashby (1952) (Seth & Friston 

2016) to emulate the self regulating activities of the human body in a mechanical 

device.   
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Homeostats operate by striving to maintain a state of equilibrium in the 

potentiometers that make up the homeostat‟s „body‟.  Each potentiometer is attached 

to an element that can be influenced, or „perturbed‟, by environmental conditions.  For 

example, in the original homeostat, four magnets were used as the elements, and the 

magnet‟s angular deviations in a trough of water became the influence by the 

environment (Ashby 1956, DeGroff & Neelakanta 2018).  The homeostat is initialized 

in a state of equilibrium, where each magnet is positioned so that it resists 

displacement by the magnetic fields of all other magnets.  However, perturbations in 

the environment (i.e. water) displace the magnets from equilibrium, realigning their 

angular deviations.  The potentiometers detect this deviation and coordinate the 

repositioning of all magnets such that the system returns to equilibrium.  A self-

organising system that has returned to equilibrium is said to have achieved 

„homeostasis‟ (Ashby 1962, Ye, Zhang & Vasilakos 2017). Figure 2.11(a) provides an 

illustration of the original homeostat, consisting of feedback from four magnets, while 

Figure 2.11(b) shows the change in feedback from each magnet when perturbed, and 

process of adaptation to regain equilibrium in the homeostat. 

 

 
 

 

(a) Photograph of the original Homeostat.  Four sets of 

magnets in a trough of water sit atop four potentiometers 

that measure their angular deviations 

 

(b) When the homeostat loses equilibrium, the angular 

deviations will be feedback to every potentiometer.  

Random perturbation alter the magnets position to 

bring the homeostat back to equilibrium 

 

Figure 2.11 Illustration of W. Ross Ashby‟s Homeostat 

 

Source: Ashby, W. R. 1952. Design for a brain: The origin of adaptive behaviour. London: Chapman 

& Hall. 
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In its simplest form, when only one element is being regulated, the operation 

of the homeostat is similar to that of the thermostat in an automatic kettle.  The 

thermostat of the kettle triggers the heating coil when it detects the water temperature 

dipping below a set threshold.  When the water has been reheated above the threshold, 

the heating coil is switched off, and the process repeats.  What makes a homeostat 

different from a thermostat is that the homeostat tries to achieve equilibrium in 

multiple diametrically opposed elements, where perturbations in one element will 

propagate to the other elements (Eldridge 2002; Stovold  2016).  Therefore, each 

permutation of the element‟s perturbations must be mapped to different actions that 

will bring the entire system to equilibrium.  In other words, the action performed must 

ensure that all elements are returned to their desired states above the threshold.  In a 

closed system, all permutations of the elements can be known beforehand; therefore 

the resolving actions for each permutation can be hardcoded into the homeostat.  In an 

open system, however, is not possible to know what all the permutations are, therefore 

the homeostat has to learn the correct resolving action to take on the fly.  In Ashby‟s 

original homeostat, upon perturbation of a single magnet, a randomizing circuit alters 

the angular deviations of all remaining magnets, until such a combination is found that 

brings the system back to equilibrium (Ashby 1956, DeGroff & Neelakanta 2018).  In 

a living organism, it is likely that homeostasis is achieved as a result of some learned 

physiological corrective state. 

 

The method of adaptation through ultrastable internal states in the homeostat 

has been implemented as a control mechanism in system design.  Homeostats are 

useful as an internal regulation mechanism for both linear and non-linear systems, and 

has been implemented in the fields of engineering and computer science (Terry & 

Capehart 1968; Yoshida 2017).  Di Paolo (2000) introduced the concept of 

homeostatic neurons integrated to an artificial neural network to control the 

locomotion of autonomous robots.  Each homeostatic neuron is trained to facilitate the 

robot to adapt to severe distortions in its visual field (i.e. looking at the world upside 

down).  The homeostatic neurons allow the robot to reorient its navigation behaviour, 

so that it may travel properly when given inverted visual input.  A similar work by 

IIzuka and Di Paolo (2008) follows the method by implementing the homeostat as a 

plastic neural controller.  The approach caters for situations where perturbations are 


